On ballistic trajectory of rigid projectile normal penetration based on a meso-scopic concrete model
-
摘要: 为研究混凝土细观因素对刚性弹正侵彻弹道偏转的影响,基于骨料随机投放的思路建立混凝土三维细观几何模型,分析刚性弹正侵彻过程中发生弹道偏转的原因及可能影响因素,定量讨论混凝土细观因素对弹道偏转的影响。结果表明:混凝土细观数值模型可以较好地反映弹体正侵彻过程中弹道偏转等典型物理现象,且细观参数对于弹体弹道偏转有显著影响。刚性弹正侵彻细观混凝土时,存在一个弹体直径/骨料最大粒径比的特征比值。Abstract: To study the effect of the concrete's mesoscopic factors on the deflection of the rigid projectile's ballistic trajectory, we established a 3-D mesoscopic model for the concrete based on the idea of randomly distributed aggregates, analyzed the causes and possible contributing factors of the ballistic trajectory deflection of the rigid projectile penetrating into a concrete target, and examined quantitatively the influence of the mesoscopic factors of the concrete. The results show that the mesoscopic concrete model is able to reflect the typical physical phenomena of a projectile's normal penetration, that the mesoscopic factors have significant effect on the deflection of the ballistic trajectory as the rigid projectile is penetrating into the mesoscopic concrete, and that there exists a characteristic ratio of the projectile's diameter to the largest possible diameter of the aggregate.
-
Key words:
- concrete /
- meso-scopic model /
- rigid projectile /
- normal penetration /
- ballistic trajectory deflexion
-
表 1 不同级配骨料粒径分布
Table 1. Distribution of aggregates with different gradations
骨料粒径/mm 骨料类型 骨料级配 Vs:Vm:Vb:Vh 5~20 Small Stone 1st gradation 1:0:0:0 20~40 Medium stone 2nd gradation 5.5:4.5:0:0 40~80 Big stone 3rd gradation 3:3:4:0 80~150 Huge stone 4th gradation 2:2:3:3 表 2 弹体及混凝土材料参数
Table 2. Material parameters of projectile and concrete
材料类型 ρ/(kg·m-3) E/GPa μc σt/MPa σc/MPa Aggregate 2 660 0.16 10 160 Motar 2 280 0.22 4 15 ITZ 2 000 0.16 2 10 Concrete 2 440 0.2 5 48 Projectile 8 020 210 0.3 表 3 剩余速度对比
Table 3. Contrast of residual velocities
v0/(m·s-1) vr/(m·s-1) 实验 模拟 360 67 73 381 136 157 434 214 237 606 449 470 749 615 633 1 058 947 963 -
[1] Backmann M E, Goldsmith W.The mechanics of penetration of projectiles into targets[J].International Journal of Engineering Science, 1978, 16(1):1-99. doi: 10.1016/0020-7225(78)90002-2 [2] 钱伟长.穿甲力学[M].北京:国防工业出版社, 1984:23-35. [3] Goldsmith W.Review:Non-ideal projectile impact on targets[J].International Journal of Impact Engineering, 1999, 22(2/3):95-395. http://d.old.wanfangdata.com.cn/Periodical/zgyxllx201711029 [4] Corbett G G, Reid S R, Johnson W.Impact loading of plates and shells by free-flying projectiles:A review[J].International Journal of Impact Engineering, 1996, 18(2):141-230. doi: 10.1016/0734-743X(95)00023-4 [5] Li Q M, Reid S R, Wen H M, et al.Local impact effects of hard missiles on concrete targets[J].International Journal of Impact Engineering, 2006, 32(1/2/3/4):224-284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f836952d7e21bc3f5f0eb712e6968392 [6] Warren T L, Fossum A F, Frew D J.Penetration into low-strength (23 MPa) concrete:Target characterization and simulations[J].International Journal of Impact Engineering, 2004, 30(5):477-503. doi: 10.1016/S0734-743X(03)00092-7 [7] Forrestal M J, Frew D J, Hickerson J P, et al.Penetration of concrete targets with deceleration-time measurements[J].International Journal of Impact Engineering, 2003, 28(5):479-497. doi: 10.1016/S0734-743X(02)00108-2 [8] 陈小伟.穿甲/侵彻问题的若干工程研究进展[J].力学进展, 2009, 39(3):316-351. doi: 10.3321/j.issn:1000-0992.2009.03.006Chen Xiaowei.Advances in the penetration/perforation of rigid projectiles[J].Advances in Mechanics, 2009, 39(3):316-351. doi: 10.3321/j.issn:1000-0992.2009.03.006 [9] Neville A M.Properties of concrete[M].5ed.Prentice Hall, 2012:112-119. [10] 何翔, 徐翔云, 孙桂娟, 等.弹体高速侵彻混凝土的效应实验[J].爆炸与冲击, 2010, 30(1):1-6. http://www.bzycj.cn/CN/abstract/abstract8811.shtmlHe Xiang, Xu Xiangyun, Sun Guijuan, et al.Experimental investigation on projectiles' high-velocity penetration into concrete target[J].Explosion and Shock Waves, 2010, 30(1):1-6. http://www.bzycj.cn/CN/abstract/abstract8811.shtml [11] Wang Z M, Kwan A K H, Chan H C.Mesoscopic study of concrete I:Generation of random aggregate structure and finite element mesh[J].Computers and Structures, 1999, 70(5):533-544. doi: 10.1016/S0045-7949(98)00177-1 [12] Fuller W B, Thompson S E.The laws of proportioning concrete[M]//The American Society of Civil Engineers.Transactions of the American Society of Civil Engineers: Vol.LIX, 1926: 67-172. [13] 刘光廷, 高政国.三维凸型混凝土骨料随机投放算法[J].清华大学学报(自然科学版), 2003, 43(8):1120-1123. doi: 10.3321/j.issn:1000-0054.2003.08.033Liu Guangting, Gao Zhengguo.Random 3-D aggregate structure for concrete[J].Journal of Tsinghua University (Science and Technology), 2003, 43(8):1120-1123. doi: 10.3321/j.issn:1000-0054.2003.08.033 [14] Vervuurt A.Interface fracture in concrete[D].Delft University of Technology, 1997: 45-49. [15] Hanchak S J, Forrestal M J.Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths[J].International Journal of Impact Engineering, 1992, 12(1):1-7. doi: 10.1016/0734-743X(92)90282-X [16] 梁斌.弹丸对有界混凝土靶侵彻研究[D].绵阳: 中国工程物理研究院, 2004: 62-89. http://cdmd.cnki.com.cn/Article/CDMD-82818-2004124640.htm [17] 陈小伟, 李继承.刚性弹侵彻深度和阻力的比较分析[J].爆炸与冲击, 2009, 29(6):584-589. doi: 10.3321/j.issn:1001-1455.2009.06.005Chen Xiaowei, Li Jicheng.Analysis on the penetration depth and resistive force in the deep penetration of a rigid projectile[J].Explosion and Shock Waves, 2009, 29(6):584-589. doi: 10.3321/j.issn:1001-1455.2009.06.005 [18] Chen Xiaowei.Dynamics of metallic and reinforced concrete targets subjected to projectile impact[D].Singapore: Nanyang Technological University, 2003: 50-67. [19] 李志康, 黄风雷.混凝土材料的动态空腔膨胀理论[J].爆炸与冲击, 2009, 29(1):95-100. http://www.bzycj.cn/CN/abstract/abstract8874.shtmlLi Zhikang, Huang Fenglei.dynamic spherical cavity-expansion theory for concrete materials[J].Explosion and Shock Waves, 2009, 29(6):95-100. http://www.bzycj.cn/CN/abstract/abstract8874.shtml