Hamilton体系下功能梯度梁的热冲击动力屈曲分析

张靖华 赵幸幸 李世荣

张靖华, 赵幸幸, 李世荣. Hamilton体系下功能梯度梁的热冲击动力屈曲分析[J]. 爆炸与冲击, 2017, 37(3): 431-438. doi: 10.11883/1001-1455(2017)03-0431-08
引用本文: 张靖华, 赵幸幸, 李世荣. Hamilton体系下功能梯度梁的热冲击动力屈曲分析[J]. 爆炸与冲击, 2017, 37(3): 431-438. doi: 10.11883/1001-1455(2017)03-0431-08
Zhang Jinghua, Zhao Xingxing, Li Shirong. Dynamic buckling analysis of functionally graded beam under thermal shock in Hamilton system[J]. Explosion And Shock Waves, 2017, 37(3): 431-438. doi: 10.11883/1001-1455(2017)03-0431-08
Citation: Zhang Jinghua, Zhao Xingxing, Li Shirong. Dynamic buckling analysis of functionally graded beam under thermal shock in Hamilton system[J]. Explosion And Shock Waves, 2017, 37(3): 431-438. doi: 10.11883/1001-1455(2017)03-0431-08

Hamilton体系下功能梯度梁的热冲击动力屈曲分析

doi: 10.11883/1001-1455(2017)03-0431-08
基金项目: 

国家自然科学基金项目 11262010

国家自然科学基金项目 11272278

详细信息
    作者简介:

    张靖华(1979-), 女, 博士,副教授,zjhhrb@163.com

  • 中图分类号: O347.2

Dynamic buckling analysis of functionally graded beam under thermal shock in Hamilton system

  • 摘要: 在Hamilton体系下,基于Euler梁理论研究了功能梯度材料梁受热冲击载荷作用时的动力屈曲问题;将非均匀功能梯度复合材料的物性参数假设为厚度坐标的幂函数形式,采用Laplace变换法和幂级数法解析求得热冲击下功能梯度梁内的动态温度场:首先将功能梯度梁的屈曲问题归结为辛空间中系统的零本征值问题,梁的屈曲载荷与屈曲模态分别对应于Hamilton体系下的辛本征值和本征解问题,由分叉条件求得屈曲模态和屈曲热轴力,根据屈曲热轴力求解临界屈曲升温载荷。给出了热冲击载荷作用下一类非均匀梯度材料梁屈曲特性的辛方法研究过程,讨论了材料的梯度特性、结构几何参数和热冲击载荷参数对临界温度的影响。
  • 图  1  第一阶临界屈曲模态

    Figure  1.  First order critical buckling mode

    图  2  第二阶屈曲模态

    Figure  2.  Second order critical buckling mode

    图  3  第三阶屈曲模态

    Figure  3.  Third order critical buckling mode

    图  4  第四阶屈曲模态

    Figure  4.  Fourth order critical buckling mode

    图  5  FGM梁的1、2阶屈曲升温随k的变化

    Figure  5.  Variations of first and second order buckling temperature rise with k

    图  6  不同a时FGM梁的临界屈曲升温(ΔT)l

    Figure  6.  Variations of critical temperature for specified values of a

    表  1  陶瓷梁的静态热屈曲量纲一临界温度

    Table  1.   The static non-dimensional critical buckling temperature of ceramic beam

    λ 量纲一临界温度
    Euler梁结果[7] Timoshenko梁结果[7] 本文
    20 3.29 3.19 3.290
    30 3.29 3.26 3.290
    40 3.29 3.27 3.290
    50 3.29 3.28 3.291
    60 3.29 3.28 3.294
    70 3.29 3.29 3.294
    80 3.29 3.29 3.294
    下载: 导出CSV

    表  2  功能梯度梁的各阶屈曲升温

    Table  2.   Buckling temperature rise of FGM beam

    n θn ΔT/K
    SiC k=0.5 k=1 k=2 k=5 k=10 k=100 Ni
    1 39.47 488.26 307.64 268.63 242.02 216.39 198.53 167.88 163.46
    2 80.76 999.04 629.48 549.65 495.21 442.76 406.21 343.50 334.46
    3 157.91 1953.43 1230.82 1074.73 968.29 865.73 794.27 671.66 653.97
    下载: 导出CSV

    表  3  不同换热系数(hr)时FGM梁的临界屈曲升温

    Table  3.   Critical temperature rise of FGM beam for some specified values of hr

    hr ΔT/K
    SiC k=0.5 k=1 k=2 k=5 k=10 k=100 Ni
    10 487.31 306.98 268.09 241.57 216.01 198.19 167.6 163.18
    30 487.79 307.31 268.36 241.8 216.2 198.36 167.74 163.32
    50 488.26 307.64 268.63 242.02 216.39 198.53 167.88 163.46
    70 488.73 307.97 268.9 242.25 216.58 198.69 168.02 163.59
    下载: 导出CSV

    表  4  不同长细比(λ)下FGM梁的临界屈曲升温(ΔT)l

    Table  4.   Critical temperature rise of FGM beam for some specified values of λ

    λ T)l/K
    SiC k=0.5 k=1 k=2 k=5 k=10 k=100 Ni
    30 868.02 546.92 477.57 430.27 384.69 352.94 298.45 290.59
    40 488.26 307.64 268.63 242.02 216.39 198.53 167.88 163.46
    50 312.49 196.89 171.92 154.89 138.49 127.05 107.44 104.61
    60 258.25 162.72 142.08 128.01 114.45 105.00 88.79 86.45
    下载: 导出CSV

    表  5  热冲击载荷作用时间(Δt)不同时FGM梁的临界屈曲升温(ΔT)l

    Table  5.   Critical temperature rise of FGM beam for some specified values of Δt

    Δt/s T)l/K
    SiC k=0.5 k=1 k=2 k=5 k=10 k=100 Ni
    1 805.26 600.65 534.75 481.04 421.57 378.73 310.23 302.12
    2 589.07 415.66 368.42 331.62 292.37 264.47 219.63 213.83
    5 488.26 307.64 268.63 242.02 216.39 198.53 167.88 163.46
    10 479.57 289.57 250.81 225.92 203.5 187.99 160.13 155.91
    479.39 288.26 249.28 224.58 202.55 187.3 159.69 155.48
    下载: 导出CSV
  • [1] 仲政, 吴林志, 陈伟球.功能梯度材料与结构的若干力学问题研究进展[J].力学进展, 2010, 40(5):528-541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002077615

    Zhong Zheng, Wu Linzhi, Chen Weiqiu.Pregress in the study on mechanics problems of functionally graded materials and structures[J].Advances in Mechanics, 2010, 40(5):528-541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002077615
    [2] 张靖华, 潘双超, 李世荣.热冲击下功能梯度圆板的动力屈曲[J].应用力学学报, 2015, 32(6):901-907. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201506003

    Zhang Jinghua, Pan Shuangchao, Li Shirong.Dynamic buckling of functionally graded circular plate under thermal shock[J].Chinese Journal of Applied Mechanics, 2015, 32(6):901-907. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201506003
    [3] Mehrian S M N, Naei M H.Two dimensional analysis of functionally graded partial annular disk under radial thermal shock using hybrid Fourier-Laplace transform[J].Applied Mechanics and Materials, 2013, 436:92-99. doi: 10.4028/www.scientific.net/AMM.436
    [4] Mirzavand B, Eslami M R, Shakeri M.Dynamic thermal postbuckling analysis of piezoelectric functionally graded cylindrical shells[J].Journal of Thermal Stresses, 2010, 33(7):646-660. doi: 10.1080/01495731003776010
    [5] Mirzavand B, Eslami M R, Reddy J N.Dynamic thermal postbuckling analysis of shear deformable piezoelectric FGM cylindrical shells[J].Journal of Thermal Stresses, 2013, 36(3):189-206. doi: 10.1080/01495739.2013.768443
    [6] Ma L S, Wang T J.Relationships between the solutions of axisymmetric bending and buckling of functionally graded circular plates based on the third-order plate theory and the classical solutions for isotropic circular plates[J].International Journal of Solids and Structures, 2004, 41(1):85-101. doi: 10.1016/j.ijsolstr.2003.09.008
    [7] Li S R, Zhang J H, Zhao Y G.Thermal post-buckling of functionally graded material Timoshenko beams[J].Applied Mathematics and Mechanics, 2006, 27(6):803-811. doi: 10.1007/s10483-006-0611-y
    [8] Li S R, Zhang J H, Zhao Y G.Nonlinear thermo-mechanical post-buckling of circular FGM plate with geometric imperfection[J].Thin Walled Structures, 2007, 45(5):528-536. doi: 10.1016/j.tws.2007.04.002
    [9] Shegokar N L, Lal A.Thermo-electromechanically induced stochastic post buckling response of piezoelectric functionally graded beam[J].International Journal of Mechanics and Materials in Design, 2014, 10(3):329-349. doi: 10.1007/s10999-014-9246-1
    [10] Shariyat M.Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells under combined axial compression and external pressure[J].International Journal of Solids and Structures, 2008, 45(9):2598-2612. doi: 10.1016/j.ijsolstr.2007.12.015
    [11] Sohn K J, Kim J H.Structural stability of functionally graded panels subjected to aero-thermal loads[J].Composite Structure, 2007, 82(3):317-325. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=11f85b2888164944f65097acd729e1bc
    [12] 徐新生, 段政, 马源, 等.辛方法和弹性圆柱壳在内外压和轴向冲击下的动态屈曲[J].爆炸与冲击, 2007, 27(6):509-514. doi: 10.3321/j.issn:1001-1455.2007.06.005

    Xu Xinsheng, Duan Zheng, Ma Yuan, et al.A symplectic method and dynamic buckling of elastic cylindrical shells under both axial impact and internal or external pressure[J].Explosion and Shock Waves, 2007, 27(6):509-514. doi: 10.3321/j.issn:1001-1455.2007.06.005
    [13] 谈梅兰, 吴光, 王鑫伟.矩形薄板面内非线性分布载荷下的辛弹性力学解[J].工程力学, 2008, 25(10):50-53. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200810012.htm

    Tan Meilan, Wu Guang, Wang Xinwei.Symplectic elasticity solutions for thin rectangular plates subjected to nonlinear distributed in plane loadings[J].Engineering Mechanics, 2008, 25(10):50-53. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200810012.htm
    [14] 刘淼.功能梯度材料结构的非传统Hamilton变分原理及其有限元法[D].上海: 同济大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10247-2008049158.htm
    [15] 褚洪杰, 徐新生, 林志华, 等.弹性梁非线性热屈曲行为与辛本征解展开方法[J].大连理工大学学报, 2011, 51(1):1-6. doi: 10.3969/j.issn.1008-407X.2011.01.001

    Chu Hongjie, Xu Xinsheng, Ling Zhihua, et al.Nonlinear thermal buckling of elastic beams and expanding method of symplectic eigensolutions[J].Journal of Dalian University of Technology, 2011, 51(1):1-6. doi: 10.3969/j.issn.1008-407X.2011.01.001
    [16] Sun J B, Xu X S, Lim C W.Buckling of functionally graded cylindrical shells under combined thermal and compressive loads[J].Journal of Thermal Stresses, 2014, 37(3):340-362. doi: 10.1080/01495739.2013.869143
    [17] Zhang J H, Li G Z, Li S R.DQM based thermal stresses analysis of a FG cylindrical shell under thermal shock[J].Journal of Thermal Stresses, 2015, 38(9), 959-982. doi: 10.1080/01495739.2015.1038488
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  4435
  • HTML全文浏览量:  1341
  • PDF下载量:  405
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-23
  • 修回日期:  2016-06-20
  • 刊出日期:  2017-05-25

目录

    /

    返回文章
    返回