细长体水下运动空化流场及弹道特性实验

赵成功 王聪 魏英杰 张孝石

赵成功, 王聪, 魏英杰, 张孝石. 细长体水下运动空化流场及弹道特性实验[J]. 爆炸与冲击, 2017, 37(3): 439-446. doi: 10.11883/1001-1455(2017)03-0439-08
引用本文: 赵成功, 王聪, 魏英杰, 张孝石. 细长体水下运动空化流场及弹道特性实验[J]. 爆炸与冲击, 2017, 37(3): 439-446. doi: 10.11883/1001-1455(2017)03-0439-08
Zhao Chenggong, Wang Cong, Wei Yingjie, Zhang Xiaoshi. Experiment of cavitation and ballistic characteristics of slender body underwater movement[J]. Explosion And Shock Waves, 2017, 37(3): 439-446. doi: 10.11883/1001-1455(2017)03-0439-08
Citation: Zhao Chenggong, Wang Cong, Wei Yingjie, Zhang Xiaoshi. Experiment of cavitation and ballistic characteristics of slender body underwater movement[J]. Explosion And Shock Waves, 2017, 37(3): 439-446. doi: 10.11883/1001-1455(2017)03-0439-08

细长体水下运动空化流场及弹道特性实验

doi: 10.11883/1001-1455(2017)03-0439-08
基金项目: 

中央高校基本科研业务费专项基金项目 HIT.NSRIF.201159

详细信息
    作者简介:

    赵成功(1986-),男,博士研究生,zcghit@163.com

  • 中图分类号: O351.2

Experiment of cavitation and ballistic characteristics of slender body underwater movement

  • 摘要: 为了研究细长体水下高速运动时空泡的产生、闭合及脱落特性,及影响细长体空泡形态及弹道特性的复杂因素等,初步开展了细长体模型水下高速运动的实验研究,分析了不同初始空化数下细长体模型在水中高速运动的一系列流动现象,重点研究了空泡的发展、闭合、尾部回射流和尾部脱落特性,以及轴对称细长体模型弹道特性与空泡形态变化之间的关系和转动特性随时间的变化历程等。结果表明:细长体水下高速运动时形成超空泡,空泡头部光滑透明,尾部凝结有汽水混合物且有交替脱落的含气漩涡;初始空化数对细长体的速度衰减有所影响;受初始扰动影响,细长体水下运动伴随有绕头部的转动且初始扰动影响细长体俯仰角随时间的变化历程。
  • 图  1  细长体水下运动实验系统示意图

    Figure  1.  Schematic of experimental facility of slender body underwater movement

    图  2  实验系统及细长体

    Figure  2.  Experimental facility and slender body

    图  3  测试系统示意图

    Figure  3.  Schematic of measurement

    图  4  细长体实验模型

    Figure  4.  Experimental model of slender body

    图  5  细长体水下运动空泡形态图

    Figure  5.  Morphology ot cavity caused by slender body moving under water

    图  6  尾拍运动时的空泡壁面形态

    Figure  6.  Cavity characteristics when tail slap occurs

    图  7  不同时刻空泡尾部的闭合及脱落

    Figure  7.  Closure and shedding characteristics of cavity tail at different times

    图  8  不同初始速度下细长体模型的速度变化

    Figure  8.  Slender body velocities vs. time with different initial velocities

    图  9  三组工况下当t=4ms的模型运动对比图

    Figure  9.  Comparison of underwater slender body movement in three different conditions (t=4ms)

    图  10  不同初始速度下细长体模型的水平位移变化

    Figure  10.  Slender body trajectories in x direction vs. time with different initial velocities

    图  11  不同初始速度下细长体模型的垂直位移变化

    Figure  11.  Slender body trajectories in y direction vs. time with different initial velocities

    图  12  夹角示意图

    Figure  12.  Schematic of angles

    图  13  不同初始速度下细长体空泡轴线与x轴夹角变化

    Figure  13.  Angle α vs. time with different initial velocities

    图  14  不同初始速度下细长体模型轴线与x轴线夹角变化

    Figure  14.  Angle β vs. time with different initial velocities

    图  15  不同初始速度下细长体轴线与空泡轴线夹角变化

    Figure  15.  Angle θ vs. time with different initial velocities

  • [1] Savchenko Y N.Control of supercavitation flow and statbility of supercavitating motion of bodies[C]//VKI Special Course on Supercavitating Flows.Brussels, 2001: 313-341.
    [2] May A.Water entry and the cavity-running behavior of missiles[R].Maryland: Naval Sea Systems Command Hydroballistics Advisory Committee, 1975. https://www.researchgate.net/publication/235099192_Water_Entry_and_the_Cavity-Running_Behavior_of_Missiles
    [3] Garabedian P R.Calculation of axially symmetric cavities and jets[J].Pacific Journal of Mathematics, 1955, 6(4):611-684. http://cn.bing.com/academic/profile?id=f231dcfa9015c6fe83921bfe5ef6fd3a&encoded=0&v=paper_preview&mkt=zh-cn
    [4] Rand R, Pratap R, Ramani D, et al.Impact dynamics of a supercavitating underwater projectile[C]//ASME Proceedings of DETC California, 1997: 1-11.
    [5] Kulkarni S S, Pratap R.Studies on thedynamics of a supercavitating projectile[J].Applied Mathematical Modelling, 2000, 24(2):113-129. doi: 10.1016/S0307-904X(99)00028-1
    [6] Vasin A D.Calculation of axisymmetric cavities downstream of a disk in subsonic compressible fluid flow[J].Fluid Dynamics, 1996, 31(2):240-248. doi: 10.1007/BF02029683
    [7] May A, Woodhull J C.Drag coefficients of steel spheres entering water vertically[J].Journal of Applied Physics, 1948, 19(12):1109-1121. doi: 10.1063/1.1715027
    [8] Ruzzene M, Soranna F.Impact dynamics of elastic stiffened supercavitating underwater vehicles[J].Journal of Vibration and Control, 2004, 10(2):243-267. doi: 10.1177/1077546304035607
    [9] 何春涛, 王聪, 何乾坤, 等.圆柱体低速入水空泡试验研究[J].物理学报, 2012, 61(13): 134701. http://www.cnki.com.cn/Article/CJFDTotal-WLXB201213043.htm

    He Chuntao, Wang Cong, He Qiankun, Qiu Yang, et al.Low speed water-entry of cylindrical projectile[J].Acta Physica Sinica, 2012 61(13)134701. http://www.cnki.com.cn/Article/CJFDTotal-WLXB201213043.htm
    [10] 熊天红, 易文俊.高速射弹超空泡减阻试验研究与数值模拟分析[J].工程力学, 2009, 26(8):174-178. http://www.cnki.com.cn/Article/CJFDTotal-GCLX200908031.htm

    Xiong Tianhong, Yi Wenjun.Experimental research and numerical simulation of supercavity drag reduction of a high speed projectile[J].Engineering Mechanics, 2009, 26(8):174-178. http://www.cnki.com.cn/Article/CJFDTotal-GCLX200908031.htm
    [11] 杨传武, 刘刚, 王安稳.超空泡体结构响应问题的有限元分析[J].海军工程大学学报, 2008, 20(2):101-104. http://d.old.wanfangdata.com.cn/Periodical/hjgcdxxb200802022

    Yang Chuanwu, Liu Gang, Wang Anwen.FEM analysis of structural response of supercavitating bodies[J].Journal of Naval University of Engineering, 2008, 20(2):101-104. http://d.old.wanfangdata.com.cn/Periodical/hjgcdxxb200802022
    [12] 张志宏, 孟庆昌, 顾建农, 等.水下亚声速细长锥型射弹超空泡形态的计算方法[J].爆炸与冲击, 2010, 30(3):254-261. http://www.bzycj.cn/CN/abstract/abstract8354.shtml

    Zhang Zhihong, Meng Qingchang, Gu Jiannong, et al.A calculation method for supercavity profile about a slender cone-shaped projectile traveling in water at subsonic speed[J].Explosion and Shock Waves, 2010, 30(3):254-261. http://www.bzycj.cn/CN/abstract/abstract8354.shtml
    [13] Hrubes J D.High-speed imaging of supercavitating underwater projectiles[J].Experiments in Fluids, 2001, 30(1):57-64. doi: 10.1007/s003480000135
    [14] Fabien P, Jacques M, Richard S, et al.Diffuse interface model for high speed cavitating underwater systems[J].International Journal of Multiphase Flow, 2009, 35(8):747-759. doi: 10.1016/j.ijmultiphaseflow.2009.03.011
    [15] Savchenko Y N, Vlasenko Y D, Semenenko V N.Experimental studies of high-speed cavitated flows[J].International Journal of Fluid Mechanics Research, 1999, 26(3):365-374 doi: 10.1615/InterJFluidMechRes.v26.i3
  • 加载中
图(15)
计量
  • 文章访问数:  4411
  • HTML全文浏览量:  1367
  • PDF下载量:  383
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-13
  • 修回日期:  2016-02-27
  • 刊出日期:  2017-05-25

目录

    /

    返回文章
    返回