管道内全阻塞障碍物对气相爆轰波传播特性的影响

喻健良 张东 闫兴清

喻健良, 张东, 闫兴清. 管道内全阻塞障碍物对气相爆轰波传播特性的影响[J]. 爆炸与冲击, 2017, 37(3): 447-452. doi: 10.11883/1001-1455(2017)03-0447-06
引用本文: 喻健良, 张东, 闫兴清. 管道内全阻塞障碍物对气相爆轰波传播特性的影响[J]. 爆炸与冲击, 2017, 37(3): 447-452. doi: 10.11883/1001-1455(2017)03-0447-06
Yu Jianliang, Zhang Dong, Yan Xingqing. Influences of blocked obstacles on propagation of gaseous detonation in pipeline[J]. Explosion And Shock Waves, 2017, 37(3): 447-452. doi: 10.11883/1001-1455(2017)03-0447-06
Citation: Yu Jianliang, Zhang Dong, Yan Xingqing. Influences of blocked obstacles on propagation of gaseous detonation in pipeline[J]. Explosion And Shock Waves, 2017, 37(3): 447-452. doi: 10.11883/1001-1455(2017)03-0447-06

管道内全阻塞障碍物对气相爆轰波传播特性的影响

doi: 10.11883/1001-1455(2017)03-0447-06
基金项目: 

国家自然科学基金项目 51574056

详细信息
    作者简介:

    喻健良(1963—),男,博士,教授,博士生导师,yujianliang@dlut.edu.cn

  • 中图分类号: O381

Influences of blocked obstacles on propagation of gaseous detonation in pipeline

  • 摘要: 建立了长2 800 mm、内径为50 mm的圆管内爆轰波传播实验装置,采用光电二极管探测火焰锋面以获得爆轰波的传播速度,采用烟迹法记录爆轰波的胞格结构。通过在管道不同位置设置阻塞率为1的聚丙烯薄膜,研究不同初始压力下不同氩气稀释浓度的C2H2+2.5O2+nAr预混气体爆轰波在通过全阻塞障碍物前后传播速度及胞格结构的变化。结果表明,气相爆轰波在达到稳态爆轰后,在通过全阻塞薄膜障碍物的过程中会产生2种不同的传播形式:速度亏损和爆轰失效。气相爆轰波穿过不同区域的传播过程可以分为3个阶段:稳态传播阶段、速度亏损阶段或爆轰失效阶段、过驱爆轰阶段。
  • 图  1  全阻塞障碍物气相爆轰实验装置

    Figure  1.  Experimental apparatus for gaseous detonation with blocking obstacles

    图  2  光电二极管电压上升曲线

    Figure  2.  Voltage rise curves of photodiodes

    图  3  高氩气稀释浓度下稳态气体爆轰波胞格

    Figure  3.  Cellular structures of stable mixtureswith high argon concentration

    图  4  爆轰失效条件下的烟熏薄膜

    Figure  4.  Smoke film under detonation failure

    图  5  聚丙烯薄膜A后的爆轰波速度特性

    Figure  5.  Velocity characteristics of detonation wave after polypropylene film A

    图  6  速度亏损过程的烟熏薄膜痕迹

    Figure  6.  Smoke film of velocity deficit

    图  7  DDT过程的烟熏薄膜

    Figure  7.  Smoke film of deflagration-to-detonation transition

    图  8  聚丙烯薄膜B前后的爆轰波速度特性

    Figure  8.  Velocity characteristics of detonation wave near polypropylene film B

    表  1  薄膜前爆轰波传播速度实验值与理论值对比

    Table  1.   Comparison between experimental and theoretical values of detonation velocity before films

    p0/kPa 薄膜位置 膜前气体 膜前测点 膜后气体 v/(m·s-1) vCJ/(m·s-1) v/vCJ
    30 A C2H2+2.5O2 N1, N2 C2H2+2.5O2 2 370 2 359 1.00
    B C2H2+2.5O2 N7~N10 C2H2+2.5O2+40%Ar 2 053 2 118 0.97
    B C2H2+2.5O2 N7~N10 C2H2+2.5O2+80%Ar 1 831 1 873 0.98
    40 A C2H2+2.5O2 N1, N2 C2H2+2.5O2 2 360 2 374 0.99
    B C2H2+2.5O2 N7~N10 C2H2+2.5O2+40%Ar 2 035 2 052 0.99
    B C2H2+2.5O2 N7~N10 C2H2+2.5O2+80%Ar 1 648 1 684 0.98
    50 A C2H2+2.5O2 N1, N2 C2H2+2.5O2 2 381 2 387 1.00
    B C2H2+2.5O2 N7~N10 C2H2+2.5O2+40%Ar 2 045 2 063 0.99
    B C2H2+2.5O2 N7~N10 C2H2+2.5O2+80%Ar 1 668 1 692 0.98
    下载: 导出CSV

    表  2  聚丙烯薄膜B后的测点N10、N11处的最小速度

    Table  2.   Minimum velocities of N10, N11 after polypropylene film B

  • [1] Fay J A.Two-dimensional gaseous detonations:Velocity deficit[J].Physics of Fluids, 1959, 2(3):283-289. doi: 10.1063/1.1705924
    [2] Lee J H S.The detonation phenomenon[M].Cambridge:Cambridge University Press, 2008.
    [3] Dorofeev S, Sidorov V, Dvoinishnikov A.Deflagration to detonation transition in large confined volume of lean hydrogen-air mixtures[J].Combustion and Flame, 1996, 104(1):95-110. doi: 10.1016-0010-2180(95)00113-1/
    [4] Zipf R K, Gamezo V N, Mohamed K M, et al.Deflagration-to-detonation transition in natural gas-air mixtures[J].Combustion and Flame, 2014, 161(8):2165-2176. doi: 10.1016/j.combustflame.2014.02.002
    [5] Oran E S, Gamezo V N, Zipf R K.Large-scale experiments and absolute detonability of methane/air mixtures[J].Combustion Science and Technology, 2015, 187(1):324-341. doi: 10.1080/00102202.2014.976308
    [6] Wu Minghsun, Kuo Weichun.Transition to detonation of an expanding flame ring in a sub-millimeter gap[J].Combustion and Flame, 2012, 159(3):1366-1368. doi: 10.1016/j.combustflame.2011.09.008
    [7] Ciccarelli G.Explosion propagation in inert porous media[J].Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2012, 370(1960):647-667. doi: 10.1098/rsta.2011.0346
    [8] Tsuboi N, Asahara M, Eto K, et al.Numerical simulation of spinning detonation in square tube[J].Shock Waves, 2008, 18(4):329-344. doi: 10.1007/s00193-008-0153-y
    [9] Christiansen E L, Kerr J H.Ballistic limit equations for spacecraft shielding[J].International Journal of Impact Engineering, 2001, 26(1):93-104. http://www.sciencedirect.com/science/article/pii/S0734743X01000707
    [10] Sorin R, Zitoun R, Desbordes D.Optimization of the deflagration to detonation transition:Reduction of length and time of transition[J].Shock Waves, 2006, 15(2):137-145. doi: 10.1007/s00193-006-0007-4
    [11] 姜宗林, 滕宏辉, 刘云峰.气相爆轰物理的若干研究进展[J].力学进展, 2012, 42(2):129-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200507488

    Jiang Zonglin, Teng Honghui, Liu Yunfeng.Some research progress on gaseous detonation physics[J].Advances in Mechanics, 2012, 42(2):129-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200507488
    [12] Gao Y, Lee J H, Ng H D.Velocity fluctuation near the detonation limits[J].Combustion and Flame, 2014, 161(11):2982-2990. doi: 10.1016/j.combustflame.2014.04.020
    [13] 朱雨建, 杨基明, Lee J H S.爆轰波透射孔栅形成的高速爆燃波的结构和行为[J].爆炸与冲击, 2008, 28(2):97-104. doi: 10.3321/j.issn:1001-1455.2008.02.001

    Zhu Yujian, Yang Jiming, Lee J H S.Structure and behavior of the high-speed deflagration generated by a detonation wave passing through a perforated plate[J].Explosion and Shock Waves, 2008, 28(2):97-104. doi: 10.3321/j.issn:1001-1455.2008.02.001
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  4213
  • HTML全文浏览量:  1269
  • PDF下载量:  426
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-17
  • 修回日期:  2015-12-25
  • 刊出日期:  2017-05-25

目录

    /

    返回文章
    返回