• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

径向非均匀压电介质中圆孔对SH波的散射

张希萌 齐辉 孙学良

陶纪南. 条形空腔药包破坏范围和抛掷堆积规律的研究[J]. 爆炸与冲击, 1990, 10(2): 176-181. doi: 10.11883/1001-1455(1990)02-0176-6
引用本文: 张希萌, 齐辉, 孙学良. 径向非均匀压电介质中圆孔对SH波的散射[J]. 爆炸与冲击, 2017, 37(3): 464-470. doi: 10.11883/1001-1455(2017)03-0464-07
Zhang Ximeng, Qi Hui, Sun Xueliang. Scattering of SH-wave by a circular cavity in radial inhomogeneous piezoelectric medium[J]. Explosion And Shock Waves, 2017, 37(3): 464-470. doi: 10.11883/1001-1455(2017)03-0464-07
Citation: Zhang Ximeng, Qi Hui, Sun Xueliang. Scattering of SH-wave by a circular cavity in radial inhomogeneous piezoelectric medium[J]. Explosion And Shock Waves, 2017, 37(3): 464-470. doi: 10.11883/1001-1455(2017)03-0464-07

径向非均匀压电介质中圆孔对SH波的散射

doi: 10.11883/1001-1455(2017)03-0464-07
基金项目: 

黑龙江自然科学基金项目 A201404

详细信息
    作者简介:

    张希萌(1989-),男,博士研究生

    通讯作者:

    齐辉,qihui205@sina.com

  • 中图分类号: O343.4

Scattering of SH-wave by a circular cavity in radial inhomogeneous piezoelectric medium

  • 摘要: 利用复变函数理论对SH波作用下含圆孔径向非均匀压电介质的反平面动力特性进行了研究。压电介质的密度沿径向按幂函数形式变化,但压电参数、弹性参数、介电参数均为常数。利用变量替换法将非均匀压电介质的变系数波动方程组转化为标准的Helmholtz方程组,得到了满足边界条件的波函数解析表达式。通过数值算例分析了入射角度、入射波频率、幂次等对应力集中系数和电场强度集中系数的影响,并与已有文献进行比较。结果表明,某些参数组合下,动应力集中系数与电场强度集中系数均随幂次增大而增大。
  • 图  1  含圆孔径向非均匀压电介质模型

    Figure  1.  Model of the radial inhomogeneous piezoelectric medium with a circular cavity

    图  2  方法验证(与文献[7]比较)

    Figure  2.  Verification of the present method (compared with reference [7])

    图  3  SH波入射角度不同时动应力集中系数的变化

    Figure  3.  Varition of DSCF around the circular cavity edge by SH-wave with different incident angles

    图  4  SH波水平入射时圆孔周边动应力集中系数随波数ka的变化情况

    Figure  4.  DSCF around circular cavity edge vs.ka by horizontal SH-wave

    图  5  SH波垂直入射时圆孔周边动应力集中系数随波数ka的变化情况

    Figure  5.  DSCF around circular cavity edgevs.ka by vertical SH-wave

    图  6  SH波水平入射时圆孔周边动应力集中系数随λ变化情况

    Figure  6.  DSCF around circular cavity edge vs. λ by horizontal SH-wave

    图  7  SH波水平入射时圆孔周边动应力集中系数随幂次β的变化情况

    Figure  7.  DSCF around circular cavity edge vs. β by horizontal SH-wave

    图  8  SH波垂直入射时圆孔θ=π/2处动应力集中系数随ka的变化

    Figure  8.  DSCF around circular cavity edge vs. ka by vertical SH-wave

    图  9  SH波以不同角度入射时圆孔周边电场强度系数的变化情况

    Figure  9.  Variation of EFICF around circular cavity edge by SH-wave with different incident angles

    图  10  SH波水平入射时圆孔周边电场强度系数随λ的变化情况

    Figure  10.  EFICF around circular cavity edge vs. λ by horizontal SH-wave

    图  11  SH波水平入射时圆孔周边电场强度系数随β变化情况

    Figure  11.  EFICF around circular cavity edge vs. β by horizontal SH-wave

    图  12  SH波水平入射时圆孔θ=π/2处电场强度系数随波数ka变化情况

    Figure  12.  EFICF at the circular cavity edge vs. ka by horizontal SH-wave

  • [1] Li X F, Peng X L, Lee K Y.The static response of functionally graded radially polarized piezoelectric spherical shells as sensors and actuators[J].Smart Materials and Structures, 2010, 19(19):035010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=beb75ccda9e9622eb7648769914a79fb
    [2] 时朋朋, 霍华颂, 李星.功能梯度压电/压磁双材料的周期界面裂纹问题[J].力学季刊, 2013, 34(2):191-198. doi: 10.3969/j.issn.0254-0053.2013.02.003

    Shi Pengpeng, Huo Huasong, Li Xing.Periodic interfacial cracks in a functionally graded piezoelectric/piezomagnetic bimaterials[J].Chinese Quarterly of Mechanics, 2013, 34(2):191-198. doi: 10.3969/j.issn.0254-0053.2013.02.003
    [3] 靳静, 马鹏.压电压磁双层材料界面裂纹断裂特性进一步分析[J].工程力学, 2013, 30(6):327-333. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GCLX201306049&dbname=CJFD&dbcode=CJFQ

    Jin Jing, Ma Peng.Further analysis for fracture behaviors of an interfacial crack between piezoelectric and piezomagnetic layers[J].Engineering Mechanics, 2013, 30(6):327-333. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GCLX201306049&dbname=CJFD&dbcode=CJFQ
    [4] 舒小平.球壳与柱壳之功能梯度压电涂层的热效应分析[J].中国机械工程, 2011, 22(24):2993-3000. http://d.old.wanfangdata.com.cn/Periodical/zgjxgc201124022

    Shu Xiaoping.Thermal response of functionally graded piezoelectric coatings on sphere and cylinder shells[J].China Mechanical Engineering, 2011, 22(24):2993-3000. http://d.old.wanfangdata.com.cn/Periodical/zgjxgc201124022
    [5] 舒小平.正交压电复合材料层板各类边界的解析解[J].工程力学, 2013, 30(10):288-295. http://www.cnki.com.cn/Article/CJFDTotal-GCLX201310042.htm

    Shu Xiaoping.Analytical solutions of cross-ply piezoelectric composite laminates with various boundary conditions[J].Engineering Mechanics, 2013, 30(10):288-295. http://www.cnki.com.cn/Article/CJFDTotal-GCLX201310042.htm
    [6] Hassan A, Song T S.Dynamic anti-plane analysis for two symmetrically interfacial cracks near circular cavity in piezoelectric bi-materials[J].Applied Mathematics and Mechanics, 2014, 35(10):1261-1270. doi: 10.1007/s10483-014-1891-9
    [7] 宋天舒, 刘殿魁, 于新华.SH波在压电材料中的散射和动应力集中[J].哈尔滨工程大学学报, 2002, 23(1):120-123. doi: 10.3969/j.issn.1006-7043.2002.01.025

    Song Tianshu, Liu Diankui, Yu Xinhua.Scattering of SH-wave and dynamic stress concentration in a piezoelectric medium with a circular hole[J].Journal of Harbin Engineering University, 2002, 23(1):120-123. doi: 10.3969/j.issn.1006-7043.2002.01.025
    [8] 杨在林, 黑宝平, 杨钦友.径向非均匀介质中圆形夹杂的动应力分析[J].力学学报, 2015, 47(3):539-543. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201503019.htm

    Yang Zailin, Hei Baoping, Yang Qinyou.Dynamic analysis on a circular inclusion in a radially inhomogeneous medium[J].Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3):539-543. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201503019.htm
    [9] 齐辉, 杨杰.SH波入射双相介质半空间浅埋任意位置圆形夹杂的动力分析[J].工程力学, 2012, 29(7):320-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203519580

    Qi Hui, Yang Jie.Dynamic analysis for shallowly buried circular inclusions of arbitrary positions impacted by SH-wave in bi-material half space[J].Engineering Mechanics, 2012, 29(7):320-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203519580
    [10] 林宏, 刘殿魁.半无限空间中圆形孔洞周围SH波的散射[J].地震工程与工程振动, 2002, 22(2):9-16. doi: 10.3969/j.issn.1000-1301.2002.02.002

    Lin Hong, Liu Diankui.Scattering of SH-wave around a circular cavity in half space[J].Earthquake Engineering and Engineering Vibration, 2002, 22(2):9-16. doi: 10.3969/j.issn.1000-1301.2002.02.002
    [11] 丁晓浩, 齐辉, 赵元博.含有直线裂纹的直角域中椭圆形夹杂对SH波的散射[J].天津大学学报, 2016, 49(4):415-421. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201604012

    Ding Xiaohao, Qi Hui, Zhao Yuanbo.Scattering of SH-wave by elliptic inclusion in right-angle plane with beeline crack[J].Journal of Tianjin University, 2016, 49(4):415-421. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201604012
    [12] 李冬, 宋天舒.含圆孔直角域压电介质的动力反平面特性[J].哈尔滨工程大学学报, 2010, 31(12):1606-1612. doi: 10.3969/j.issn.1006-7043.2010.12.008

    Li Dong, Song Tianshu.Dynamic anti-plane behavior for a quarter-infinite piezoelectric medium with a subsurface circular cavity[J].Journal of Harbin Engineering University, 2010, 31(12):1606-1612. doi: 10.3969/j.issn.1006-7043.2010.12.008
  • 期刊类型引用(6)

    1. 畅里华, 李剑, 汪伟, 王旭, 张光升, 高鹏, 肖正飞, 尚长水. 棱镜转像机构在超高速转镜相机中的应用. 光电工程. 2019(01): 73-79 . 百度学术
    2. 周涛, 李亮亮, 屈可朋, 肖玮. RDX基含铝炸药的剪切试验及损伤模式. 火炸药学报. 2017(06): 78-82 . 百度学术
    3. 王玉玲, 郭亚南. 表面吸附对JO-9159炸药力学性能影响的分子动力学模拟. 火炸药学报. 2016(02): 80-85 . 百度学术
    4. 章猛华, 阮文俊, 宁惠君, 董凯, 余永刚. 复合型含能破片冲击波起爆特性研究. 弹道学报. 2016(01): 64-69 . 百度学术
    5. 李金河, 傅华, 曾代朋, 李涛. 低冲击加载下JOB-9003炸药的反应阈值. 爆炸与冲击. 2015(06): 876-880 . 本站查看
    6. 李金河, 曾代朋, 傅华, 赵继波. 一种研究炸药反应阈值的新方法. 实验力学. 2015(03): 363-366 . 百度学术

    其他类型引用(2)

  • 加载中
图(12)
计量
  • 文章访问数:  4585
  • HTML全文浏览量:  1306
  • PDF下载量:  344
  • 被引次数: 8
出版历程
  • 收稿日期:  2015-11-23
  • 修回日期:  2016-06-24
  • 刊出日期:  2017-05-25

目录

    /

    返回文章
    返回