基于SPH方法粒子射流破岩数值模拟与实验研究

赵健 张贵才 徐依吉 周毅 王瑞英 邢雪阳 李建波

赵健, 张贵才, 徐依吉, 周毅, 王瑞英, 邢雪阳, 李建波. 基于SPH方法粒子射流破岩数值模拟与实验研究[J]. 爆炸与冲击, 2017, 37(3): 479-486. doi: 10.11883/1001-1455(2017)03-0479-08
引用本文: 赵健, 张贵才, 徐依吉, 周毅, 王瑞英, 邢雪阳, 李建波. 基于SPH方法粒子射流破岩数值模拟与实验研究[J]. 爆炸与冲击, 2017, 37(3): 479-486. doi: 10.11883/1001-1455(2017)03-0479-08
Zhao Jian, Zhang Guicai, Xu Yiji, Zhou Yi, Wang Ruiying, Xing Xueyang, Li Jianbo. SPH-based numerical simulation and experimental study on rock breaking by particle impact[J]. Explosion And Shock Waves, 2017, 37(3): 479-486. doi: 10.11883/1001-1455(2017)03-0479-08
Citation: Zhao Jian, Zhang Guicai, Xu Yiji, Zhou Yi, Wang Ruiying, Xing Xueyang, Li Jianbo. SPH-based numerical simulation and experimental study on rock breaking by particle impact[J]. Explosion And Shock Waves, 2017, 37(3): 479-486. doi: 10.11883/1001-1455(2017)03-0479-08

基于SPH方法粒子射流破岩数值模拟与实验研究

doi: 10.11883/1001-1455(2017)03-0479-08
基金项目: 

中石油科学研究与技术开发项目 2015F-1801

第58批中国博士后基金项目 2015M582167

中央高校基本科研业务费专项项目 16CS02061A

山东省自然科学基金项目 ZR2016EL10

青岛市应用基础研究项目 16-5-1-37-jch

详细信息
    作者简介:

    赵健 (1987—),男,博士,zhaojian-666@163.com

  • 中图分类号: O389

SPH-based numerical simulation and experimental study on rock breaking by particle impact

  • 摘要: 钻井液中加入体积分数为1%~3%的钢质粒子在钻头喷嘴处高速喷出冲击岩石,实现了粒子射流冲击和钻头机械联合破岩,有效提高了破岩效率。利用瞬态非线性动力学有限元模拟软件,基于光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)方法,考虑流体对粒子射流冲击的影响,建立了粒子射流冲击破岩的物理模型,获得了粒子射流参数对破岩体积的影响规律,进行了室内实验验证,验证了SPH方法的有效性。结果表明:粒子射流冲击岩石表面形成规则的V型冲击坑;同条件下粒子射流破岩体积是水射流破岩体积的2~4倍;随着粒子射流冲蚀时间的增加,粒子射流破岩体积不断增加,但破岩效率降低;粒子射流压力大于10 MPa后,粒子射流破岩效率迅速增大;喷射角度大于6°后,破岩效率迅速减小。
  • 图  1  粒子射流破岩计算模型

    Figure  1.  Calculation model for rock breaking caused by particle jet

    图  2  粒子射流破岩实验设备

    Figure  2.  Experimental equipment of rock breaking with particle jet

    图  3  粒子射流破岩实验流程

    Figure  3.  Flow diagram of rock breaking with particle jet

    图  4  实验粒子及冲击后岩样

    Figure  4.  Experimental particles and rock sample after impact

    图  5  岩石等效应力云图

    Figure  5.  Von Mises stress nephogram of the rock

    图  6  粒子射流形成的V型冲击坑

    Figure  6.  V-shaped crater caused by particle jet

    图  7  粒子射流破岩和水射流破岩

    Figure  7.  Rock breaking caused by particle jet and water jet

    图  8  粒子射流破岩体积随时间的变化

    Figure  8.  Rock breaking volume caused by particle jet as a function of time

    图  9  粒子射流破岩体积随压力的变化

    Figure  9.  Rock breaking volume caused by particle jet as a function of pressure

    图  10  粒子射流破岩体积随喷射角度的变化

    Figure  10.  Rock breaking volume caused by particle jet as a function of jet angle

    图  11  粒子射流喷射角

    Figure  11.  Particle jet angle

  • [1] Tibbitts G A, Galloway G G.Particle drilling alters standard rock-cutting approach[J].World Oil, 2008, 229(6):37-44. http://d.old.wanfangdata.com.cn/Periodical/gwytgc200912009
    [2] Tibbitts G A.Impact excavation system and method with suspension flow control: 7798249[P].2010-09-21.
    [3] Galloway G G.Shot blocking using drilling mud: 8342256B2[P].2013-01-01.
    [4] 赵健, 韩烈祥, 徐依吉, 等.粒子冲击钻井技术理论与现场试验[J].天然气工业, 2014, 34(8):102-106. doi: 10.3787/j.issn.1000-0976.2014.08.016

    Zhao Jian, Han Liexiang, Xu Yiji, et al.A theoretical study and field test of the particle impact drilling technology[J].Natural Gas Industry, 2014, 34(8):102-106. doi: 10.3787/j.issn.1000-0976.2014.08.016
    [5] 徐依吉, 赵红香, 孙伟良, 等.钢粒冲击岩石破岩效果数值分析[J].中国石油大学学报(自然科学版), 2009, 33(5):68-69. doi: 10.3321/j.issn:1673-5005.2009.05.013

    Xu Yiji, Zhao Hongxiang, Sun Weiliang, et al.Numerical analysis on rock breaking effect of steel particles impact rock[J].Journal of China University of Petroleum (Edition of Natural Science), 2009, 33(5):68-69. doi: 10.3321/j.issn:1673-5005.2009.05.013
    [6] 王政, 倪玉山, 曹菊珍, 等.冲击载荷下混凝土动态力学性能研究进展[J].爆炸与冲击, 2005, 25(6):519-527. doi: 10.3321/j.issn:1001-1455.2005.06.007

    Wang Zheng, Ni Yushan, Cao Junzhen, et al.Recent advances of dynamics mechanical behavior of concrete under impact loading[J].Explosion and Shock Waves, 2005, 25(6):519-527. doi: 10.3321/j.issn:1001-1455.2005.06.007
    [7] Wiederhorn S M, Lawn B R.Strength degradation of glass resulting from impact with spheres[J].Journal of the American Ceramic Society, 1977, 60(9):451-458. doi: 10.1111/j.1151-2916.1977.tb15531.x/full
    [8] Sheldon G L.Effects of surface hardness and other material properties on erosive wear of metals by solid particles[J].Journal of Engineering Materials and Technology, 1977, 99(2):133-137. doi: 10.1115/1.3443422
    [9] Evans A G, Gulden M E, Rosenblatt M.Impact damage in brittle materials in the elastic-plastic response regime[J].Proceedings of the Royal Society A:Mathematical Physical and Engineering Sciences, 1978, 361:343-365. doi: 10.1098/rspa.1978.0106
    [10] Adler T A, DoĝanÖN.Damage by indentation and single impact of hard particles on a high chromium white cast iron[J].Wear, 1997, 203/204(96):257-266.. http://www.sciencedirect.com/science/article/pii/S0043164896074352
    [11] Wang J, Guo D M.A predictive depth of penetration model for abrasive water jet cutting of polymer matrix composites[J].Journal of Materials Processing Technology, 2002, 121(2):390-394. http://www.sciencedirect.com/science/article/pii/S0924013601012468
    [12] 王明波, 王瑞和, 陈炜卿.单个磨料颗粒冲击岩石过程的数值模拟研究[J].石油钻探技术, 2009, 37(5):34-38. doi: 10.3969/j.issn.1001-0890.2009.05.008

    Wang Mingbo, Wang Ruihe, Chen Weiqing.Numerical simulation study of rock breaking mechanism and process under abrasive water jet[J].Petroleum Drilling Techniques, 2009, 37(5):34-38. doi: 10.3969/j.issn.1001-0890.2009.05.008
    [13] 况雨春, 朱志谱, 蒋海军, 等.单粒子冲击破岩实验与数值模拟[J].石油学报, 2012, 33(6):1059-1063. http://d.old.wanfangdata.com.cn/Periodical/syxb201206019

    Kuang Yuchun, Zhu Zhipu, Jiang Haijun, et al.The experimental study and numerical simulation of single particle impacting rock[J].Acta Petrolei Sinica, 2012, 33(6):1059-1063. http://d.old.wanfangdata.com.cn/Periodical/syxb201206019
    [14] 姜美旭.粒子冲击破岩规律的仿真研究及参数优化[D].北京: 北京化工大学, 2011: 37-47. http://cdmd.cnki.com.cn/Article/CDMD-10010-1012217671.htm
    [15] 伍开松, 古剑飞, 况雨春, 等.粒子冲击钻井技术述评[J].西南石油大学学报(自然科学版), 2008, 30(2):142-146. doi: 10.3863/j.issn.1000-2634.2008.02.037

    Wu Kaisong, Gu Jianfei, Kuang Yuchun, et al.Comment on particle impact drilling technology[J].Journal of Southwest Petroleum University (Science and Technology Edition), 2008, 30(2):142-146. doi: 10.3863/j.issn.1000-2634.2008.02.037
    [16] 孙占华.基于FE-SPH自适应耦合方法的弹靶侵彻动态响应分析[D].长沙: 湖南大学, 2012: 8-27. http://cdmd.cnki.com.cn/Article/CDMD-10532-1012481293.htm
    [17] 林晓东, 卢义玉, 汤积仁, 等.基于SPH-FEM耦合算法的磨料水射流破岩数值模拟[J].振动与冲击, 2014, 33(18):170-176. http://d.old.wanfangdata.com.cn/Periodical/zdycj201418028

    Lin Xiaodong, Lu Yiyu, Tang Jiren, et al.Numerical simulation of abrasive water jet breaking rock with SPH-FEM coupling algorithm[J].Journal of Vibration and Shock, 2014, 33(18):170-176. http://d.old.wanfangdata.com.cn/Periodical/zdycj201418028
    [18] 张若棋, 丁育青, 汤文辉, 等.混凝土HJC、RHT本构模型的失效强度参数[J].高压物理学报, 2011, 25(1):15-21. http://d.old.wanfangdata.com.cn/Conference/7151809

    Zhang Ruoqi, Ding Yuqing, Tang Wenhui, et al.The failure strength parameter of HJC and RHT concrete constitutive models[J].Chinese Journal of High Pressure Physics, 2011, 25(1):15-21. http://d.old.wanfangdata.com.cn/Conference/7151809
    [19] 巫绪涛, 李耀, 李和平, 等.混凝土HJC本构模型参数的研究[J].应用力学学报, 2010, 27(2):340-345. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201002021

    Wu Xutao, Li Yao, Li Heping, et al.Research on the material constants of HJC dynamic constitutive model for concrete[J].Chinese Journal of Applied Mechanics, 2011, 25(1):340-345. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201002021
    [20] 段鹏.影响粒子冲击破岩效果主要因素的实验研究[D].青岛: 中国石油大学(华东), 2012: 38-49. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2071088
  • 加载中
图(11)
计量
  • 文章访问数:  4467
  • HTML全文浏览量:  1280
  • PDF下载量:  669
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-07
  • 修回日期:  2015-11-25
  • 刊出日期:  2017-05-25

目录

    /

    返回文章
    返回