Measures for improving the resistance of a flatbed protective doorframe wallunder intensive shock loading
-
摘要: 在强冲击波荷载作用下门框墙转角处会产生明显的应力集中,影响门框墙体系甚至整个防护结构的安全。为解决该问题,提出在迎爆面门框墙和衬砌结合部位设置薄弱层的构造方法,从而减小冲击荷载引起的过大的拉应力。运用考虑了剪切变形的悬臂梁理论分析表明,梁端部约束刚度的变化可以影响结构的破坏形态以及结构的内力分布,降低端部的约束刚度可以有效降低端部区域的内力峰值,延缓结构发生破坏的时间。利用有限元模拟的方法,分析了在出入口门框墙位置设置薄弱层对门框墙动力响应和破坏规律的影响。分析结果表明,设置薄弱层可以有效降低门框墙转角处的应力,降低门框墙结构破坏的风险,进而提高门框墙的抗力水平。Abstract: Intensive shock loading can lead to obvious stress concentration at the corner of a doorframe and jeopardize the safety of a doorframe wall and even the whole protective structure where it is installed. To solve this problem, we proposed to install a weak layer between the doorframe and the lining to reduce the excessive tensile stress, based on the cantilever beam theory that takes into account the shear deformation. The results show that, as the constraint stiffness of the beam end can influence the structure's failure mode and distribution of the internal force, lowering the constraint stiffness of the beam end can reduce the peak value of the internal force and delay the failure time of the structure. Using the finite element method, we analyzed the influence of the weak layer on the dynamic response and the failure mode of the doorframe. The results show that the weak layer can effectively reduce the stress of the doorframe's corner and the damaging effect of the doorframe wall structure so that the resistance of the doorframe can be improved.
-
Key words:
- doorframe wall /
- high impact load /
- weak layer /
- dynamic response
-
表 1 剪切破坏时的弯矩情况
Table 1. Bending moments at shear failure times
R ts/ms Ms/M ∞ 0.060 5 0.603 2EI 0.067 9 0.632 EI 0.078 1 0.651 0.5EI 0.111 4 0.700 表 2 门框墙上单元的最大有效塑性应变
Table 2. Maximum plastic strains of doorframe wall elements
单元编号 εd, before εd, after εd, before/εd, after 1 9.42×10-4 9.27×10-5 0.098 2 9.48×10-4 8.69×10-5 0.092 3 6.32×10-3 6.17×10-3 0.977 4 5.30×10-4 1.63×10-5 0.031 5 1.72×10-3 5.06×10-5 0.029 6 3.16×10-3 1.35×10-3 0.429 7 6.54×10-3 1.24×10-3 0.189 9 4.02×10-3 3.89×10-3 0.967 表 3 衬砌上单元的最大有效塑性应变
Table 3. Maximum plastic strains of lining elements
单元编号 εl, before εl, after εl, before/εl, after 10 3.20×10-2 7.08×10-2 2.210 11 3.32×10-2 7.43×10-2 2.239 12 2.95×10-2 6.88×10-2 2.333 13 2.58×10-2 5.65×10-2 2.189 14 3.07×10-2 8.93×10-2 2.914 15 5.01×10-3 4.55×10-3 0.907 表 4 薄弱层深度对门框墙上单元塑性的影响
Table 4. Influence of weak layer depth on plastic strain of doorframe elements
深度/mm εd(单元2) εd(单元6) εd(单元7) εd(单元9) 0 9.58×10-4 3.21×10-3 6.57×10-3 3.98×10-3 300 2.58×10-4 2.04×10-3 2.88×10-3 3.79×10-3 600 1.51×10-4 1.66×10-3 1.88×10-3 3.88×10-3 900 8.69×10-5 1.35×10-3 1.24×10-3 3.89×10-3 -
[1] 方秦, 柳锦春.地下防护结构[M].北京:中国水利水电出版社, 2010:294-297. [2] Crawford R E, Higgins C J, Bultmann E H.The air force manual for design and analysis of hardened structures[M].New Mexico:Civil Nuclear System Corporation, 1980:523-529. [3] 王有熙, 许宏发, 孙远.门框墙内力计算模型的比较分析[J].防灾减灾工程学报, 2006, 26(1):89-92. http://d.old.wanfangdata.com.cn/Periodical/dzxk200601016Wang Youxi, Xu Hongfa, Sun Yuan.Comparative analysis of the calculation models of doorframe wall's internal forces[J].Journal of Disaster Prevention and Mitigation Engineering, 2006, 26(1):89-92. http://d.old.wanfangdata.com.cn/Periodical/dzxk200601016 [4] 杨宜民.防护工程口部梁式门、框体系动力性能研究[J].浙江大学学报(自然科学版), 1992(增):96-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003719287Yang Yimin.Dynamic properties of beam-type doorframe wall system at the hardened entrance[J].Journal of Zhejiang University (Natural Science), 1992(suppl):96-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003719287 [5] 郭乙木, 鲁祖统.超强冲击波作用下地下坑道防护门门框结构设计的应用研究[J].浙江大学学报(自然科学版), 1995, 29(3):282-289. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500604531Guo Yimu, Lu Zutong.The practical study of protective doorframe structural design of a tunnel under super strong shock wave[J].Journal of Zhejiang University (Natural Science), 1995, 29(3):282-289. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500604531 [6] 中国建筑标准设计研究院.人民防空地下室设计规范: GB50038-2005.[S].北京: 中华人民共和国建筑部, 2005: 73-76. [7] Ross T J.Direct shear failure in reinforced concrete beams under impulsive loading: AFWL-TR_83_84[R].Air Force Weapons Laboratory, Kirtland Air Force Base, NM, 1983: 20-89. [8] 钱七虎, 王明洋.高等防护结构计算理论[M].南京:江苏科学技术出版社, 2009:192-206. [9] 柳锦春, 方秦.爆炸荷载作用下钢筋混凝土梁的动力响应及破坏形态分析[J].爆炸与冲击, 2003, 23(1):25-30. http://www.bzycj.cn/CN/abstract/abstract10014.shtmlLiu Jinchun, Fang Qin.Analysis of dynamic responses and failure modesof R/C beams under blast loading[J].Explosion and Shock Waves, 2003, 23(1):24-30. http://www.bzycj.cn/CN/abstract/abstract10014.shtml [10] 方秦, 吴平安.爆炸荷载作用下影响RC梁破坏形态的主要因素分析[J].计算力学学报, 2003, 20(1):39-42. doi: 10.3969/j.issn.1007-4708.2003.01.009Fang Qin, Wu Ping'an.Main factors affecting failure modes of blast loaded R/C beams[J].Chinese Journal of Computational Mechanic, 2003, 20(1):39-42. doi: 10.3969/j.issn.1007-4708.2003.01.009 [11] 孙钧, 汪炳鉴.地下结构有限元法解析[M].上海:同济大学出版社, 1988:205-209. [12] 丁泰山.超欠挖状态下地下洞室围岩稳定性数值分析[D].西安: 西北工业大学, 2007: 18-20. [13] Livermore Software Technology Corporation.970 keyword user's manual[M].Livermore:Livermore Software Technology Corporation, 2003:92-99. [14] Brode H L.Weapons effects for protective design[R].California: Rand Corporation, 1960: 17-20. [15] 赵跃堂, 罗中兴, 李振慧, 等.深埋地下结构静动力耦合响应分析的边界条件设置方法[J].岩土力学, 2013, 34(5):1495-1500. http://d.old.wanfangdata.com.cn/Periodical/ytlx201305043Zhao Yuetang, Luo Zhongxing, Li Zhenhui, et al.Boundary condition setting method for coupled static and dynamic response analysis of deep underground structure[J].Rock and Soil Mechanics, 2003, 34(5):1495-1500. http://d.old.wanfangdata.com.cn/Periodical/ytlx201305043