Numerical analysis of penetration resistance of ceramic/fluid cabin composite structure
-
摘要: 为研究陶瓷/液舱复合结构抗侵彻机理,在前期弹道冲击实验结果基础上,运用LS-DYNA进行了数值模拟,再现了陶瓷/液舱复合结构在弹体冲击下的破坏过程和破坏模式,得到与实验一致的结果。结果表明:弹体撞击结构后,结构内产生的冲击波以撞击处为圆心、以球形向前传播,并在结构内来回反射振荡;弹体在水中运动时,水中形成空泡且不断扩展,弹体头部水域形成高压区域;弹体发生墩粗和侵蚀破坏,在低速冲击下,弹体破坏主要发生在穿透陶瓷和前面板过程中,在高速冲击下,弹体破坏主要发生在水中运动阶段,最终形成类似“饼状”的严重变形;前、后面板发生局部破坏和整体变形,在高速弹体撞击下,后面板将发生花瓣开裂。Abstract: To study the mechanism behind the penetration resistance capability of the ceramic/fluid cabin composite structure, numerical simulation was carried out using LS-DYNA to represent the structure's failure process and modes under the impact of the projectile, and results were obtained that agree well with those from the experiment. The results show that the shockwave generated at the impact point of the structure propagated forward spherically, and bounced and oscillated back and forth in the structure. Cavity was generated in the water and constantly grew, and there was an area of high pressure in front of the projectile when the projectile was moving in the water. The projectile mainly exhibited coarse and erosive damage, and the damage mainly occurred in the process of the projectile penetrating the ceramic and the front plate at low velocities and in the water at high velocities, eventually forming approximately bake-shaped serious deformation. The front and back plates mainly suffered local failure and overall deformation, while petal-shaped cracking occurred in the back plate under high-velocity impact.
-
Key words:
- failure mode /
- ceramic /
- penetration
-
表 1 实验类型以及组合形式和相关参数
Table 1. Experiment types, combining forms and related parameters
实验编号 类型 组合形式 约束覆板厚度/mm 陶瓷厚度/mm 前面板厚度/mm 后面板厚度/mm 1~3 Ⅰ 1s-5s - - 1 5 4~6 Ⅰ 2s-4s - - 2 4 7~8 Ⅰ 4s-2s - - 4 2 9~13 Ⅱ 3c2s-4s - 3 2 4 14 Ⅱ 5c2s-4s - 5 2 4 15~16 Ⅲ 1s3c1s-4s 1 3 1 4 17 Ⅲ 1s3c1s-4s 1 5 1 4 表 2 弹体的材料参数
Table 2. Material parameters of projectile
G/GPa A1/MPa B1/MPa n C1 m D1 CV/(J·kg·K-1) Tm/K T0/K 80.8 335 350 0.782 0.0483 0.804 0.8 477 1793 300 表 3 液舱结构的材料参数
Table 3. Material parameters of water-filled structure
σ0/MPa Eh/MPa n D/s-1 εf 235 250 5 40.4 0.28 表 4 水和空气的材料参数
Table 4. Material parameters of water and air
材料 ρ0/(kg·m-3) c/(m·s-1) S1 S2 S3 γ0 a C4 C5 E0/(kJ·m-3) 水 1000 1448 1.979 0 0 0.11 3 - - 0 空气 1.22 - - - - - - 0.4 0.4 253 表 5 陶瓷的材料参数
Table 5. Material parameters of ceramic
ρ0/(g·cm-3) A2/GPa B2/GPa C2/GPa M N T/GPa σH/GPa 3.89 0.88 0.50 0 0.6 0.64 0.35 6.5 pH/GPa ${{\dot \varepsilon }_0}$/s-1 β D1 D2 K1/GPa K2/GPa K3/GPa Fs 3.48 1.0 1.0 0.13 1 230.1 -160 2373 1.0 表 6 计算值与实验值的比较
Table 6. Comparison of calculating values and experimental values
实验编号 组合形式 初始速度/(m·s-1) 实验剩余速度/(m·s-1) 计算剩余速度/(m·s-1) 剩余速度偏差率/% 实验剩余长度/mm 计算剩余长度/mm 剩余长度偏差率/% 1 1s-5s 792.4 300.6 300 -0.2 17.8 17.5 -1.7 2 1s-5s 958.2 390.6 379 -3.0 - 16.4 - 3 1s-5s 1068.0 440.9 408 -7.5 - 15.8 - 4 2s-4s 966.8 425.0 348 -18.1 - 16.4 - 5 2s-4s 773.6 294.3 294 -0.1 17.4 17.1 -1.7 6 2s-4s 954.0 332.2 345 3.9 - 16.5 - 7 4s-2s 792.6 321.7 348 8.4 18.5 17.3 -6.4 8 4s-2s 996.2 490.1 447 -8.8 - 16.3 - 9 3c2s-4s 862.9 257.6 248 -3.7 16.6 15.4 -7.2 10 3c2s-4s 953.7 344.9 336 -2.6 16.5 16.0 -3.0 11 3c2s-4s 990.0 330.0 359 8.8 - 16.2 - 12 3c2s-4s - - - - - - - 13 3c2s-4s 1014.0 360.7 395 9.5 15.0 15.9 0.6 14 5c2s-4s 1030.9 304.4 326 7.2 14.5 15.7 8.3 -
[1] 朱锡, 张振华, 刘润泉, 等.水面舰艇舷侧防雷舱结构模型抗爆试验研究[J].爆炸与冲击, 2004, 24(2):133-139. doi: 10.3321/j.issn:1001-1455.2004.02.006Zhu Xi, Zhang Zhenhua, Liu Runquan, et al.Experimental study on the explosion resistance of cabin near shipboard of surface warship subjected to underwater contact explosion[J].Explosion and Shock Waves, 2004, 24(2):133-139. doi: 10.3321/j.issn:1001-1455.2004.02.006 [2] 徐定海, 盖京波, 王善, 等.防护模型在接触爆炸作用下的破坏[J].爆炸与冲击, 2008, 28(5):476-480. doi: 10.3321/j.issn:1001-1455.2008.05.016Xu Dinghai, Gai Jingbo, Wang Shan, et al.Deformation and failure of layered defense models subjected to contact explosive load[J].Explosion and Shock Waves, 2008, 28(5):476-480. doi: 10.3321/j.issn:1001-1455.2008.05.016 [3] 卢芳云, 李翔宇, 林玉亮.战斗部结构与原理[M].北京:科学出版社, 2009. [4] 沈哲, 肖素娟, 南长江等.鱼雷战斗部与引信技术[M].北京:国防工业出版社, 2009. [5] 段卓平, 朱艳丽, 张连生.爆炸成型弹丸对Al2O3装甲陶瓷材料的侵彻实验研究[J].爆炸与冲击, 2006, 26(6):505-509. doi: 10.3321/j.issn:1001-1455.2006.06.005Duan Zhuoping, Zhu Yanli, Zhang Liansheng.DOP experimental study on EFP penetrating Al2O3 armor ceramic[J].Explosion and Shock Waves, 2006, 26(6):505-509. doi: 10.3321/j.issn:1001-1455.2006.06.005 [6] 李金柱, 张连生, 黄风雷.EFP侵彻陶瓷/金属复合靶实验运动网格法模拟[J].北京理工大学学报, 2012, 32(10):1004-1008. doi: 10.3969/j.issn.1001-0645.2012.10.002Li Jinzhu, Zhang Liansheng, Huang Fenglei.Simulation of EFP penetrating into ceramic/steel composite target using moving mesh/method[J].Transactions of Beijing Institute of Technology, 2012, 32(10):1004-1008. doi: 10.3969/j.issn.1001-0645.2012.10.002 [7] Fellows N A, Barton P C.Development of impact model for ceramic-faced semi-infinite armour[J].International Journal of Impact Engineering, 1999, 22(8):793-881. doi: 10.1016/S0734-743X(99)00017-2 [8] 侯海量, 朱锡, 李伟.轻型陶瓷/金属复合装甲抗弹机理研究[J].兵工学报, 2013, 34(1):106-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb201301019Hou Hailiang, Zhu Xi, Li Wei.Investigation on bullet proof mechanism of light ceramic/steel composite armor[J].Journal of China Ordnance, 2013, 34(1):106-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb201301019 [9] Lecysyn N, Bony-Dandrieux A, Aprin L, et al.Experimental study of hydraulic ram effects on a liquid storage tank:Analysis of overpressure and cavitation induced by a high-speed projectile[J].Journal of Hazardous Materials, 2010, 178(1/2/3):635-643. http://www.sciencedirect.com/science/article/pii/S0304389410001688 [10] Disimile P J, Toy N, Swanson LA.A large-scale shadowgraph technique applied to hydrodynamic ram[J].Journal of Flow Visualization and Image Processing, 2009, 16(4):1-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e4c766726c6f5629d9732baabe2cf211 [11] 徐双喜.大型水面舰船舷侧复合多层防护结构研究[D].武汉: 武汉理工大学, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1750730 [12] 李典, 朱锡, 侯海量.高速杆式弹侵彻下蓄水结构防护效能数值分析[J].海军工程大学学报, 2015, 4(21):21-25. http://d.old.wanfangdata.com.cn/Periodical/hjgcdxxb201504005Li Dian, Zhu Xi, Hou Hailiang.Numerical analysis of protective efficacy of water-filled structure subjected to high velocity long-rod projectile penetration[J].Journal of Naval University of Engineering, 2015, 4(21):21-25. http://d.old.wanfangdata.com.cn/Periodical/hjgcdxxb201504005 [13] 尹建平.多爆炸成型弹丸战斗部技术[M].北京:国防工业出版社, 2012. [14] Mcintosh G.The Johnson-Holmquist model as used in LS-DYNA 2D[R].America: Defense Technical Information Center, 1998. [15] 沈晓乐, 朱锡, 侯海量, 等.高速破片入水镦粗变形及侵彻特性有限元分析[J].舰船科学技术, 2012, 34(7):25-29. doi: 10.3404/j.issn.1672-7649.2012.07.005Shen Xiaole, Zhu Xi, Hou Hailiang, et al.Finite element analysis of underwater high velocity fragment mushrooming and penetration properties[J].Ship Science and Technology, 2012, 34(7):25-29. doi: 10.3404/j.issn.1672-7649.2012.07.005