Experimental study and numerical simulation of projectile obliquely penetrating into concrete target
-
摘要: 以弹体斜侵彻混凝土的弹道特性为研究内容,通过侵彻实验与数值模拟得到了不同速度下的侵彻深度、开坑尺寸、偏转角等参数,实验结果与模拟结果吻合较好。研究结果表明:倾角对开坑深度和开坑形状影响很大;倾角越大,对侵彻深度和偏转角的影响越明显,弹体偏转角随着速度的增大呈现减小的趋势;当倾角增至一定角度后发生跳弹现象,据此得到跳弹极限角与倾角、侵彻速度的关系。Abstract: The ballistic characteristics of the projectile obliquely penetrating into the concrete target were investigated, with such data as the penetration depth, crater depth and diameter, deflection angle obtained via the experiments and simulation calculation. The results from simulation agree well with those from the experiments. The results show that the oblique angle has great influence on the crater zone. The greater the oblique angle, the greater the projectile's deflection; the greater the impact velocity, the less the influence of the ballistic deflection angle; and the ricochet occurs when the oblique angle increases to a certain degree. Thus the relationship was identified between the ricochet angle and the oblique angle and the penetration velocity.
-
表 1 倾角侵彻混凝土实验结果
Table 1. Experimental results of oblique penetration into concrete
v/(m·s-1) β/(°) 实验现象 S/cm Yd/cm Xd/cm Xp/cm Yp/cm h/cm δ/(°) 1 018 20 侵入 19.7 22.0 28.0 16.8 23.6 5.6 4.6 920 20 侵入 18.5 15.5 18.0 10.2 18.0 4.0 9.6 853 20 侵入 16.5 25.0 28.0 14.6 14.2 3.6 14.1 1 051 30 侵入 26.0 15.0 18.0 17.5 22.5 5.2 7.6 805 30 侵入 17.5 11.5 14.5 8.7 12.3 3.1 11.2 925 30 侵入 18.1 13.4 16.7 10.3 14.5 3.6 13.4 923 40 侵入 16.3 12.5 15.2 11.2 5.6 2.2 17.5 922 51 跳弹 15.0 10.0 21.0 12.4 2.5 2.5 25.0 1 222 65 跳弹 19.0 21.0 25.0 16.3 5.4 5.4 31.0 表 2 混凝土材料模型参数
Table 2. Parameters of concrete material model
ρ/(g·cm-3) A B N C fc/GPa Smax G/GPa D1 D2 2.4 0.79 1.6 0.61 0.007 0.048 7 14.86 0.04 1 εf, min pc/GPa μc/GPa K1/GPa K2/GPa K3/GPa pc/GPa μ1 T/GPa 0.01 0.016 0.001 1 85 -171 208 0.8 0.1 0.004 表 3 弹体实验与数值模拟结果对比
Table 3. Comparison of experimental with simulated results
编号 v/(m·s-1) β/(°) Yp/cm 误差/% δ/(°) 误差/% 实验 数值模拟 实验 数值模拟 1 1 018 20 23.6 22.1 6.3 4.6 4.9 6.5 2 920 20 18.0 16.8 6.6 9.6 10.5 9.4 3 853 20 14.2 13.4 5.9 14.1 15.3 8.5 4 1 051 30 22.5 20.9 7.7 7.6 8.2 7.9 5 805 30 12.3 11.5 6.9 11.2 12.1 8.1 6 925 30 14.5 13.8 5.4 13.4 14.6 10.3 7 923 40 5.6 5.2 3.6 17.5 19.4 8.2 8 922 51 2.5 2.3 8.6 80.0 84.2 6.7 -
[1] Gold V M, Vradis G C, Pearson J C. Concrete penetration by eroding projectiles:Experiments and analysis[J].Journal of Engineering Mechanics, 1996, 122(2):145-152. doi: 10.1061/(ASCE)0733-9399(1996)122:2(145) [2] Forrestal M J, Frew D J, Hanchak S J, et al. Penetation of grount and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5):465-476. doi: 10.1016/0734-743X(95)00048-F [3] Macek R W, Duffey T. Finite cavity expansion method for near-surface effects and layering during earth penetration[J]. Modeling and simulation based engineering, 1998, 10(2):1138-1143. https://www.sciencedirect.com/science/article/pii/S0734743X99001566 [4] Longcope D B, Tabbara M R, Jung J. Modeling of oblique penetration into geologic targets using cavity expansion penetrator loading with target free-surface effects: SAND99-1104C[R]. Albuquerque, New Mexico, USA: Sandia Nation Laboratories, 1999. https://www.osti.gov/biblio/7224-N2IJ4G/webviewable/ [5] Warren T L, Poormon K L. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: Experiments and simulations[J]. International Journal of Impact Engineering, 2001, 25:993-1022. doi: 10.1016/S0734-743X(01)00024-0 [6] Forrestal M J, Frew D J, Hicheron J P, et al. Penetration of concrete targets with deceleration time measurement[J]. International Journal of Impact Engineering, 2003, 28(5):479-497. doi: 10.1016/S0734-743X(02)00108-2 [7] Lampert S, Jeanquartier R. Perforation of concrete targets by an eroding tungsten-alloy rod[C]//Proceedings of the 22th International Symposium on Billistics. Vancouver, Canada, 2005: 838-843. [8] 刘小虎, 刘吉, 王乘, 等.弹丸低速垂直侵彻无钢筋混凝土的实验研究[J].爆炸与冲击, 1999, 19(4):323-328. doi: 10.3321/j.issn:1001-1455.1999.04.006Liu Xiaohui, Liu Ji, Wang Cheng, et al. Experimental study on the projectile penetration normally into a plain concrete[J]. Explosion and Shock Waves, 1999, 19(4):323-328. doi: 10.3321/j.issn:1001-1455.1999.04.006 [9] 王明洋, 郑大亮, 钱七虎.弹体对混凝土介质侵彻、贯穿的比例换算关系[J].爆炸与冲击, 2004, 24(2):108-114. doi: 10.3321/j.issn:1001-1455.2004.02.002Wang Mingyang, Zheng Daliang, Qian Qihu. The scaling problems of penetration and perforation for projectile into concrete media[J]. Explosion and Shock Waves, 2004, 24(2):108-114. doi: 10.3321/j.issn:1001-1455.2004.02.002 [10] 王浩, 陶如意.截卵形弹头对混凝土靶侵彻性能的试验研究[J].爆炸与冲击, 2005, 25(2):171-175. doi: 10.3321/j.issn:1001-1455.2005.02.013Wang Hao, Tao Ruyi. Experimental study on the penetration performance of truncated-ogive nose projectile[J]. Explosion and Shock Waves, 2005, 25(2):171-175. doi: 10.3321/j.issn:1001-1455.2005.02.013 [11] 武海军, 黄风雷, 王一楠. 高速弹体非正侵彻混凝土试验研究[C]//第八届全国爆炸力学学术会议文集. 吉安, 2007: 488-494. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=6442558 [12] 马爱娥, 黄凤雷.弹体斜侵彻钢筋混凝土的试验研究[J].北京理工大学学报, 2007, 27(6):482-486. doi: 10.3969/j.issn.1001-0645.2007.06.004Ma Ai'e, Huang Fenglei. Experimental research on oblique penetration into reinforced concrete[J]. Transactions of Beijing Institute of Technology, 2007, 27(6):482-486. doi: 10.3969/j.issn.1001-0645.2007.06.004 [13] 吕中杰, 徐钰巍, 黄凤雷.弹体斜侵彻混凝土过程中的方向偏转[J].兵工学报, 2009, 30(2):301-304. Lü http://www.cnki.com.cn/Article/CJFDTotal-BIGO2009S2065.htmLü Zhongjie, Xu Yuwei, Huang Fenglei. Transverse deflection of projectile obliquely penetrating into concrete[J]. Acta Armamentarii, 2009, 30(2):301-305. http://www.cnki.com.cn/Article/CJFDTotal-BIGO2009S2065.htm [14] 王可慧, 宁建国, 李志康, 等.高速弹体非正侵彻混凝土靶的弹道偏转试验研究[J].高压物理学报, 2013, 27(4):561-566. http://www.gywlxb.cn/CN/Y2013/V27/I4/561Wang Kehui, Ning Jianguo, Li Zhikang, et al. Ballistic trajectory of high-velocity projectile obliquely penetrating concrete target[J]. Chinese Journal of High Pressure Physics, 2013, 27(4):561-566. http://www.gywlxb.cn/CN/Y2013/V27/I4/561