Experimental study and numerical simulation of projectile obliquely penetrating into concrete target
-
摘要: 以弹体斜侵彻混凝土的弹道特性为研究内容,通过侵彻实验与数值模拟得到了不同速度下的侵彻深度、开坑尺寸、偏转角等参数,实验结果与模拟结果吻合较好。研究结果表明:倾角对开坑深度和开坑形状影响很大;倾角越大,对侵彻深度和偏转角的影响越明显,弹体偏转角随着速度的增大呈现减小的趋势;当倾角增至一定角度后发生跳弹现象,据此得到跳弹极限角与倾角、侵彻速度的关系。Abstract: The ballistic characteristics of the projectile obliquely penetrating into the concrete target were investigated, with such data as the penetration depth, crater depth and diameter, deflection angle obtained via the experiments and simulation calculation. The results from simulation agree well with those from the experiments. The results show that the oblique angle has great influence on the crater zone. The greater the oblique angle, the greater the projectile's deflection; the greater the impact velocity, the less the influence of the ballistic deflection angle; and the ricochet occurs when the oblique angle increases to a certain degree. Thus the relationship was identified between the ricochet angle and the oblique angle and the penetration velocity.
-
表 1 倾角侵彻混凝土实验结果
Table 1. Experimental results of oblique penetration into concrete
v/(m·s-1) β/(°) 实验现象 S/cm Yd/cm Xd/cm Xp/cm Yp/cm h/cm δ/(°) 1 018 20 侵入 19.7 22.0 28.0 16.8 23.6 5.6 4.6 920 20 侵入 18.5 15.5 18.0 10.2 18.0 4.0 9.6 853 20 侵入 16.5 25.0 28.0 14.6 14.2 3.6 14.1 1 051 30 侵入 26.0 15.0 18.0 17.5 22.5 5.2 7.6 805 30 侵入 17.5 11.5 14.5 8.7 12.3 3.1 11.2 925 30 侵入 18.1 13.4 16.7 10.3 14.5 3.6 13.4 923 40 侵入 16.3 12.5 15.2 11.2 5.6 2.2 17.5 922 51 跳弹 15.0 10.0 21.0 12.4 2.5 2.5 25.0 1 222 65 跳弹 19.0 21.0 25.0 16.3 5.4 5.4 31.0 表 2 混凝土材料模型参数
Table 2. Parameters of concrete material model
ρ/(g·cm-3) A B N C fc/GPa Smax G/GPa D1 D2 2.4 0.79 1.6 0.61 0.007 0.048 7 14.86 0.04 1 εf, min pc/GPa μc/GPa K1/GPa K2/GPa K3/GPa pc/GPa μ1 T/GPa 0.01 0.016 0.001 1 85 -171 208 0.8 0.1 0.004 表 3 弹体实验与数值模拟结果对比
Table 3. Comparison of experimental with simulated results
编号 v/(m·s-1) β/(°) Yp/cm 误差/% δ/(°) 误差/% 实验 数值模拟 实验 数值模拟 1 1 018 20 23.6 22.1 6.3 4.6 4.9 6.5 2 920 20 18.0 16.8 6.6 9.6 10.5 9.4 3 853 20 14.2 13.4 5.9 14.1 15.3 8.5 4 1 051 30 22.5 20.9 7.7 7.6 8.2 7.9 5 805 30 12.3 11.5 6.9 11.2 12.1 8.1 6 925 30 14.5 13.8 5.4 13.4 14.6 10.3 7 923 40 5.6 5.2 3.6 17.5 19.4 8.2 8 922 51 2.5 2.3 8.6 80.0 84.2 6.7 -
[1] Gold V M, Vradis G C, Pearson J C. Concrete penetration by eroding projectiles:Experiments and analysis[J].Journal of Engineering Mechanics, 1996, 122(2):145-152. doi: 10.1061/(ASCE)0733-9399(1996)122:2(145) [2] Forrestal M J, Frew D J, Hanchak S J, et al. Penetation of grount and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5):465-476. doi: 10.1016/0734-743X(95)00048-F [3] Macek R W, Duffey T. Finite cavity expansion method for near-surface effects and layering during earth penetration[J]. Modeling and simulation based engineering, 1998, 10(2):1138-1143. https://www.sciencedirect.com/science/article/pii/S0734743X99001566 [4] Longcope D B, Tabbara M R, Jung J. Modeling of oblique penetration into geologic targets using cavity expansion penetrator loading with target free-surface effects: SAND99-1104C[R]. Albuquerque, New Mexico, USA: Sandia Nation Laboratories, 1999. https://www.osti.gov/biblio/7224-N2IJ4G/webviewable/ [5] Warren T L, Poormon K L. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: Experiments and simulations[J]. International Journal of Impact Engineering, 2001, 25:993-1022. doi: 10.1016/S0734-743X(01)00024-0 [6] Forrestal M J, Frew D J, Hicheron J P, et al. Penetration of concrete targets with deceleration time measurement[J]. International Journal of Impact Engineering, 2003, 28(5):479-497. doi: 10.1016/S0734-743X(02)00108-2 [7] Lampert S, Jeanquartier R. Perforation of concrete targets by an eroding tungsten-alloy rod[C]//Proceedings of the 22th International Symposium on Billistics. Vancouver, Canada, 2005: 838-843. [8] 刘小虎, 刘吉, 王乘, 等.弹丸低速垂直侵彻无钢筋混凝土的实验研究[J].爆炸与冲击, 1999, 19(4):323-328. doi: 10.3321/j.issn:1001-1455.1999.04.006Liu Xiaohui, Liu Ji, Wang Cheng, et al. Experimental study on the projectile penetration normally into a plain concrete[J]. Explosion and Shock Waves, 1999, 19(4):323-328. doi: 10.3321/j.issn:1001-1455.1999.04.006 [9] 王明洋, 郑大亮, 钱七虎.弹体对混凝土介质侵彻、贯穿的比例换算关系[J].爆炸与冲击, 2004, 24(2):108-114. doi: 10.3321/j.issn:1001-1455.2004.02.002Wang Mingyang, Zheng Daliang, Qian Qihu. The scaling problems of penetration and perforation for projectile into concrete media[J]. Explosion and Shock Waves, 2004, 24(2):108-114. doi: 10.3321/j.issn:1001-1455.2004.02.002 [10] 王浩, 陶如意.截卵形弹头对混凝土靶侵彻性能的试验研究[J].爆炸与冲击, 2005, 25(2):171-175. doi: 10.3321/j.issn:1001-1455.2005.02.013Wang Hao, Tao Ruyi. Experimental study on the penetration performance of truncated-ogive nose projectile[J]. Explosion and Shock Waves, 2005, 25(2):171-175. doi: 10.3321/j.issn:1001-1455.2005.02.013 [11] 武海军, 黄风雷, 王一楠. 高速弹体非正侵彻混凝土试验研究[C]//第八届全国爆炸力学学术会议文集. 吉安, 2007: 488-494. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=6442558 [12] 马爱娥, 黄凤雷.弹体斜侵彻钢筋混凝土的试验研究[J].北京理工大学学报, 2007, 27(6):482-486. doi: 10.3969/j.issn.1001-0645.2007.06.004Ma Ai'e, Huang Fenglei. Experimental research on oblique penetration into reinforced concrete[J]. Transactions of Beijing Institute of Technology, 2007, 27(6):482-486. doi: 10.3969/j.issn.1001-0645.2007.06.004 [13] 吕中杰, 徐钰巍, 黄凤雷.弹体斜侵彻混凝土过程中的方向偏转[J].兵工学报, 2009, 30(2):301-304. Lü http://www.cnki.com.cn/Article/CJFDTotal-BIGO2009S2065.htmLü Zhongjie, Xu Yuwei, Huang Fenglei. Transverse deflection of projectile obliquely penetrating into concrete[J]. Acta Armamentarii, 2009, 30(2):301-305. http://www.cnki.com.cn/Article/CJFDTotal-BIGO2009S2065.htm [14] 王可慧, 宁建国, 李志康, 等.高速弹体非正侵彻混凝土靶的弹道偏转试验研究[J].高压物理学报, 2013, 27(4):561-566. http://www.gywlxb.cn/CN/Y2013/V27/I4/561Wang Kehui, Ning Jianguo, Li Zhikang, et al. Ballistic trajectory of high-velocity projectile obliquely penetrating concrete target[J]. Chinese Journal of High Pressure Physics, 2013, 27(4):561-566. http://www.gywlxb.cn/CN/Y2013/V27/I4/561 期刊类型引用(16)
1. 江丙友,洪汉,苏明清,鲁昆仑,杨炳辉,王培龙,丁大伟. 密闭管道内瓦斯爆炸卷扬沉积煤尘爆炸传播特性. 煤炭学报. 2024(04): 1941-1951 . 百度学术
2. 裴蓓,张子阳,潘荣锟,余明高,陈立伟,温小萍. 不同强度冲击波诱导沉积煤尘爆炸火焰传播特性. 煤炭学报. 2021(02): 498-506 . 百度学术
3. 杨前意,石必明,张雷林,张鸿智,王超. 不同含水率煤尘在瓦斯爆炸诱导下爆炸传播规律研究. 中国安全生产科学技术. 2019(03): 25-29 . 百度学术
4. 景国勋,刘闯,段新伟,郭邵帅,张胜旗,吴昱楼,邵泓源. 半封闭管道内瓦斯-煤尘耦合爆炸实验研究. 煤炭学报. 2019(S1): 157-163 . 百度学术
5. 李海涛,陈晓坤,邓军,文虎,罗振敏,王秋红,张嬿妮,翟小伟. 湍流状态下竖直管道内甲烷-煤尘预混特征及爆炸过程数值模拟. 煤炭学报. 2018(06): 1769-1779 . 百度学术
6. 屈姣,邓军,王秋红,王彩萍. 褐煤煤尘云在不同环境气氛的燃爆特性. 西安科技大学学报. 2018(04): 546-552 . 百度学术
7. 李雨成,刘天奇,周西华. 基于量纲分析理论的煤尘爆炸能量预测模型. 爆炸与冲击. 2017(03): 566-570 . 本站查看
8. 李雨成,刘天奇,周西华,刘蓉蒸. 携煤尘高压气流诱导沉积煤粉爆炸火焰特性研究. 中国安全科学学报. 2017(05): 58-63 . 百度学术
9. 魏明生,童敏明,梁良,王华睿. 矿井煤尘粒度和浓度实时在线检测系统实验研究. 煤矿安全. 2016(05): 30-33 . 百度学术
10. 李雨成,刘天奇,周西华. 煤尘爆炸危险等级模糊结构元综合决策研究. 中国安全科学学报. 2016(02): 67-72 . 百度学术
11. 李雨成,刘天奇,周西华. 煤尘爆炸火焰传播特性因子分析与BP网络组合预测研究. 中国安全科学学报. 2015(10): 53-58 . 百度学术
12. 司荣军. 瓦斯煤尘爆炸研究现状及发展趋势. 矿业安全与环保. 2014(01): 72-75+79 . 百度学术
13. 邓军,屈姣,王秋红. 煤矿瓦斯煤尘燃烧与爆炸研究现状及展望. 煤矿现代化. 2014(05): 96-99 . 百度学术
14. 尉存娟,谭迎新,胡双启,侯万兵. 瓦斯爆炸诱导瓦斯-煤尘二次爆炸的试验研究. 中国安全科学学报. 2014(12): 29-32 . 百度学术
15. 李润之. 不同总量沉积煤尘在瓦斯爆炸诱导下的传播规律模拟研究. 矿业安全与环保. 2013(01): 17-20+25 . 百度学术
16. 刘丹,李润之,司荣军,张延松. 瓦斯爆炸诱导沉积煤尘参与爆炸作用模式. 煤炭学报. 2011(11): 1879-1883 . 百度学术
其他类型引用(23)
-