Mechanism research of thin plate petaling under local loading based on multiaxial stress damage
-
摘要: 开展了多种应力状态下的船用钢力学特性实验,基于多轴应力状态损伤的失效准则研究了局部冲击荷载作用下圆形板的花瓣型破口形成过程,划分了花瓣型破口形成的3个阶段,分析了裂纹区域、非裂纹区域应力状态变化过程及损伤情况。得到:(1)考虑多轴应力损伤的舰船用钢失效准则能有效预测受力状态复杂的花瓣状破口;(2)花瓣型破口的形成主要分为蝶形凹陷、中心区域裂纹扩展、花瓣形成与翻转等3个阶段;(3)花瓣型破口的裂纹区和非裂纹区均受力复杂,破口预测须考虑应力状态对损伤特性的影响;(4)花瓣形成过程中,第1阶段和第3阶段均匀变形,第2阶段损伤局部化明显,花瓣卷曲会造成花瓣根部的二次损伤。Abstract: A failure criterion considering multiaxial stress state was proposed based on the thin plate damage testing. According to the evaluation of the stress state variation and damage level of the cracking and non-cracking areas, the following conclusions can be reached: (1) the petaling phenomenon of the thin plate used for naval ships can be forecasted effectively by the proposed failure criterion; (2) the petaling procedure can be divided into three distinct stages consisting of butterfly depressing, central area cracking, and petal processing; (3) the stress states of the cracking area and the non-cracking area are complicated, and the stress state's influence on the damage characteristics should be considered in predicting the petaling crevasse; (4) during the petaling, the central area will sink homogeneously, the cracking will result in large local deformation, and the petal cusps' curve will lead to a secondary damage to the petal roots.
-
Key words:
- petaling /
- stress triaxiality /
- stress state /
- failure criterion
-
表 1 不同准则预测的断裂应变值
Table 1. Fracture strains predicted by different criteria
实验试件 εf, exp εf, nom $\frac{{{\varepsilon _{{\rm{f}}, {\rm{nom}}}} - {\varepsilon _{{\rm{f}}, {\rm{exp}}}}}}{{{\varepsilon _{{\rm{f}}, {\rm{exp}}}}}}/\% $ εf, new $\frac{{{\varepsilon _{{\rm{f}}, {\rm{new}}}} - {\varepsilon _{{\rm{f}}, {\rm{exp}}}}}}{{{\varepsilon _{{\rm{f}}, {\rm{exp}}}}}}/\% $ 缺口拉伸试样1 0.39 0.4 2.6 0.38 -2.6 缺口拉伸试样2 0.49 0.4 -18.4 0.54 10.2 缺口拉伸试样3 0.63 0.4 -36.5 0.67 6.3 缺口拉伸试样4 0.72 0.4 -44.4 0.68 -5.6 缺口拉伸试样5 0.69 0.4 -42.0 0.74 7.2 单轴拉伸 1.03 0.4 -61.2 0.86 -16.5 剪切试样 0.49 0.4 -18.4 0.46 -6.1 压剪试样 0.64 0.4 -37.5 0.69 7.8 圆柱压缩试样1 1.98 0.4 -79.8 1.97 -0.5 圆柱压缩试样2 2.10 0.4 -81.0 2.08 -1.0 -
[1] Scheffler D R, Zuka J A. Practical aspects of numerical simulation of dynamic events: material interfaces[J]. International Journal of Impact Engineering, 2000, 24(8):821-842. doi: 10.1016/S0734-743X(00)00003-8 [2] Jacob N, Nurick G N, Langdon G S. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads[J]. Engineering Structures, 2007, 29(10):2723-2736. doi: 10.1016/j.engstruct.2007.01.021 [3] 牟金磊, 朱锡, 张振华.水下爆炸载荷作用下加筋板变形及开裂试验研究[J].振动与冲击, 2008, 27(1):57-61. doi: 10.3969/j.issn.1000-3835.2008.01.013Mu Jinlei, Zhu Xi, Zhang Zhenhua. Experimental study on deformation and rupture of stiffed plates subjected to underwater shock[J]. Journal of Vibration and Shock, 2008, 27(1):57-61. doi: 10.3969/j.issn.1000-3835.2008.01.013 [4] 陈长海, 朱锡, 侯海量, 等.近距空爆载荷作用下固支方板的变形及破坏模式[J].爆炸与冲击, 2012, 32(4):368-375. doi: 10.3969/j.issn.1001-1455.2012.04.005Chen Changhai, Zhu Xi, Hou Hailiang, et al. Deformation and failure modes of clamped square plates under close-range air blast loads[J]. Explosion and Shock Waves, 2012, 32(4):368-375. doi: 10.3969/j.issn.1001-1455.2012.04.005 [5] 陈长海, 朱锡, 侯海量, 等.近距空爆载荷作用下双层防爆舱壁结构抗爆性能仿真分析[J].海军工程大学学报, 2012, 24(3):26-34. doi: 10.3969/j.issn.1009-3486.2012.03.006Chen Changhai, Zhu Xi, Hou Hailiang, et al. Numerical analysis of blast resistance of double-layer bulkhead structures subjected to close-rang air blast[J]. Journal of Naval University of Engineering, 2012, 24(3):26-34. doi: 10.3969/j.issn.1009-3486.2012.03.006 [6] Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1):81-98. doi: 10.1016/j.ijmecsci.2004.02.006 [7] Li Xiaobin, Li Ying, Zheng Yuanzhou. Influence of stress wave on dynamics damage character of ship-build low-carbon steel based on low-velocity Taylor impact bar[J]. Journal of Ship Mechanics, 2014, 18(12):1495-1504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cblx201412009 [8] Bao Y, Wierzbicki T. On the cut-off value of negative triaxiality for fracture[J]. Engineering Fracture Mechanics, 2005, 72(7):1049-1069. doi: 10.1016/j.engfracmech.2004.07.011 [9] 金属材料室温拉伸试验方法: GB/T 228-2002[S]. 北京: 中国标准出版社, 2002: 1-38. http://www.csres.com/detail/62523.html [10] 刘敬喜, 崔濛, 龚榆峰.船舶碰撞仿真失效准则比较[J].中国舰船研究, 2015, 10(4):79-85. http://d.old.wanfangdata.com.cn/Periodical/zgjcyj201504012Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity, 2008, 24(6):1071-1096. http://d.old.wanfangdata.com.cn/Periodical/zgjcyj201504012 [11] 李营. 液舱防爆炸破片侵彻作用机理研究[D]. 武汉: 武汉理工大学, 2014: 23-24. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D617120 [12] Nurick G N, Radford A M. Deformation and tearing of clamped circular plates subjected to localized central blast load[C]//Recent Developments in Computational and Applied Mechanics. Barcelona, 1997: 276-301.