泡沫铝子弹高速撞击下铝基复合泡沫夹层板的动态响应

张博一 赵威 王理 王伟 武高辉 张强

张博一, 赵威, 王理, 王伟, 武高辉, 张强. 泡沫铝子弹高速撞击下铝基复合泡沫夹层板的动态响应[J]. 爆炸与冲击, 2017, 37(4): 600-610. doi: 10.11883/1001-1455(2017)04-0600-11
引用本文: 张博一, 赵威, 王理, 王伟, 武高辉, 张强. 泡沫铝子弹高速撞击下铝基复合泡沫夹层板的动态响应[J]. 爆炸与冲击, 2017, 37(4): 600-610. doi: 10.11883/1001-1455(2017)04-0600-11
Zhang Boyi, Zhao Wei, Wang Li, Wang Wei, Wu Gaohui, Zhang Qiang. Dynamic response of aluminum matrix syntactic foams sandwich panel subjected to foamed aluminum projectile impact loading[J]. Explosion And Shock Waves, 2017, 37(4): 600-610. doi: 10.11883/1001-1455(2017)04-0600-11
Citation: Zhang Boyi, Zhao Wei, Wang Li, Wang Wei, Wu Gaohui, Zhang Qiang. Dynamic response of aluminum matrix syntactic foams sandwich panel subjected to foamed aluminum projectile impact loading[J]. Explosion And Shock Waves, 2017, 37(4): 600-610. doi: 10.11883/1001-1455(2017)04-0600-11

泡沫铝子弹高速撞击下铝基复合泡沫夹层板的动态响应

doi: 10.11883/1001-1455(2017)04-0600-11
基金项目: 

国家自然科学基金项目 51108141

国家自然科学基金项目 51578201

黑龙江省青年科学基金项目 QC2011C064

哈尔滨科技创新人才基金项目 RC2012QN012011

详细信息
    作者简介:

    张博一(1979-),男,博士,副教授,zhangby@hit.edu.cn

  • 中图分类号: O347.3

Dynamic response of aluminum matrix syntactic foams sandwich panel subjected to foamed aluminum projectile impact loading

  • 摘要: 应用一级轻气炮驱动泡沫铝弹丸高速撞击加载技术,对实心钢板以及前/后面板为Q235钢板、芯层分别为铝基复合泡沫和普通泡沫铝的夹层板结构,在脉冲载荷作用下的动态力学响应进行实验研究。结果表明:泡沫铝子弹高速撞击靶板可近似模拟爆炸载荷效果;铝基复合泡沫夹层板的变形分为芯层压缩和整体变形两个阶段;与其他靶板相比,铝基复合泡沫夹层板的抗冲击性能最优。基于实验研究,应用LS-DYNA非线性动力有限元软件,对泡沫铝夹层板的动态响应进行数值模拟。结果表明:泡沫铝子弹的长度和初始速度对子弹与夹层板之间的接触作用力影响显著,并且呈线性关系。泡沫芯层强度对等质量及等厚度夹层板的抗冲击性能均有显著影响,夹层板中心挠度对前、后面板的厚度匹配较为敏感,在临界范围内,若背板厚度大于面板厚度,可减小夹层板的最终挠度。夹层板面板宜采用刚度较低、延性好、拉伸破坏应变较大的金属材料。
  • 图  1  一级轻气炮实验装置示意图及实物图

    Figure  1.  Schematic and physical layout of gas gun system

    图  2  加载后试件的变形特征

    Figure  2.  Deformation of specimens after impact loading

    图  3  冲击实验有限元模型

    Figure  3.  Finite element model of the impact experiment

    图  4  3种泡沫铝的本构模型

    Figure  4.  Constitutive modeling of three different aluminum foams

    图  5  冲击实验全过程与数值模拟对比

    Figure  5.  Comparison of experiment and simulation for impact process

    图  6  不同冲击速度下的接触力时程曲线

    Figure  6.  Contact force vs.time at different impact velocities

    图  7  不同冲击速度下的接触力时程曲线

    Figure  7.  Contact force vs.time at different impact velocities

    图  8  不同子弹长度对应的接触力时程曲线

    Figure  8.  Contact force vs.time with different bullet lengths

    图  9  接触时间-子弹长度关系曲线

    Figure  9.  Impact time-bullet length curve

    图  10  具有不同芯层强度试件的等效应力云图

    Figure  10.  Equivalent stress nephogram of the specimen with different core layer thicknesses

    图  11  等厚度试样的位移时程曲线

    Figure  11.  Displacement-time curves of specimens with constant thickness

    图  12  等厚度试样的接触力时程曲线

    Figure  12.  Contact force-time curves of specimens with constant thickness

    图  13  等质量试样的位移时程曲线

    Figure  13.  Displacement-time curves of specimens with constant mass

    图  14  等质量试样的接触力时程曲线

    Figure  14.  Contact force-time curves of specimens with constant mass

    图  15  厚度匹配试样的位移时程曲线

    Figure  15.  Displacement-time curves of specimens with matched plate thickness

    图  16  厚度匹配试样的接触力时程曲线

    Figure  16.  Contact force-time curves of specimens with matched plate thickness

    图  17  厚度匹配试样的吸能时程曲线

    Figure  17.  Energy absorption-time curves of specimens with matched plate thickness

    图  18  面板材料不同的铝基复合泡沫夹层板的位移时程曲线

    Figure  18.  Displacement-time curves of aluminum matrix syntactic foams sandwich panel with different front plates

    图  19  面板材料不同的铝基复合泡沫夹层板的接触力时程曲线

    Figure  19.  Contact force-time curves of aluminum matrix syntactic foams sandwich panel with different front plates

    表  1  夹层板试件的主要参数

    Table  1.   Key parameters of the sandwich plate

    试件编号 df/mm dc/mm db/mm 芯层材料 σc/MPa E/GPa ν mtot/kg
    SP-1 0.8 5.0 0.8 1199Al(150 μm) 45 22.1 0.12 0.825
    SP-2 0.8 10.0 0.8 1199Al(150 μm) 45 22.1 0.12 1.075
    SP-3 0.8 20.0 0.8 1199Al(150 μm) 45 22.1 0.12 1.505
    SP-4 0.8 10.0 0.8 1199Al(80 μm) 65 27.4 0.14 1.345
    SP-5 0.8 15.0 0.8 普通泡沫铝 5 0.427 0.24 1.565
    ST 2.5 0.780
    下载: 导出CSV

    表  2  夹层板前、后面板中心测点最大扰度

    Table  2.   Maximum deflection at the center of the front plate and the back plate

    试件编号 前板最大挠度/mm 后板最大挠度/mm
    SP-1 9.022 2 9.576 0
    SP-2 7.975 6 8.137 0
    SP-3 3.646 1 3.252 5
    SP-4 4.694 3 4.309 7
    SP-5 10.385 7 9.473 9
    ST 21.820 0
    下载: 导出CSV

    表  3  夹层板前、后面板挠度的实验与模拟结果对比

    Table  3.   Comparison of experiment and simulation for the deflections at the center of the front and back plates

    t/ms 前板最大挠度/mm 后板最大挠度/mm
    实验 计算 实验 计算
    0.15 3.67 4.13 3.26 3.53
    0.33 4.69 4.94 4.32 4.74
    2.70 9.01 10.53 8.24 7.86
    8.70 10.39 15.27 9.47 9.93
    下载: 导出CSV

    表  4  夹层板前、后面板变形情况的实验结果与模拟结果对比

    Table  4.   Comparison of experiment and simulation for the deformations of the front and back plates

    试件编号 前板最大位移 后板最大位移
    实验值/mm 计算值/mm 相对误差/% 实验值/mm 计算值/mm 相对误差/%
    SP-1 9.02 10.51 16.51 9.58 9.96 3.97
    SP-2 7.98 8.18 2.51 8.14 7.66 -5.90
    SP-3 3.65 4.09 12.05 3.25 3.49 4.31
    SP-4 4.69 4.90 4.47 4.31 4.72 9.51
    SP-5 10.39 15.30 47.25 9.47 9.14 -3.48
    ST 21.82 19.23 -11.87
    下载: 导出CSV

    表  5  等厚度分析中夹层板参数

    Table  5.   Parameters of sandwich plate in the constant thickness analysis

    试件编号 df/mm dc/mm db/mm σc/MPa
    DHD-1 0.8 10.0 0.8 65
    DHD-2 0.8 10.0 0.8 45
    DHD-3 0.8 10.0 0.8 5
    下载: 导出CSV

    表  6  等质量分析中夹层板参数

    Table  6.   Parameters of sandwich plate in the constant mass analysis

    试件编号 df/mm dc/mm db/mm σc/MPa
    DZL-1 0.8 7.38 0.8 65
    DZL-2 0.8 10.00 0.8 45
    DZL-3 0.8 8.83 0.8 5
    DZL-4 2.6
    下载: 导出CSV

    表  7  面板厚度匹配试件参数

    Table  7.   Parameters of the sandwich plate in thickness matching analysis

    试件编号 δ df/mm dc/mm db/mm dtot/mm
    SP-1/5 1:5 1.51 34.4 7.53 43.44
    SP-1/2 1:2 3.01 34.4 6.03 43.44
    SP-1/1 1:1 4.52 34.4 4.52 43.44
    SP-2/1 2:1 6.03 34.4 3.01 43.44
    SP-5/1 5:1 7.53 34.4 1.51 43.44
    下载: 导出CSV
  • [1] 赵桂平, 卢天健.多孔金属夹层板在冲击载荷作用下的动态响应[J].力学学报, 2008, 40(2):194-206. doi: 10.3321/j.issn:0459-1879.2008.02.007

    Zhao Guiping, Lu Tianjian. Dynamic response of cellular metallic sandwich plates under impact loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2):194-206. doi: 10.3321/j.issn:0459-1879.2008.02.007
    [2] 敬霖, 王志华, 赵隆茂.多孔金属及其夹芯结构力学性能的研究进展[J].力学与实践, 2015, 37(1):1-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxysj201501001

    Jing Lin, Wang Zhihua, Zhao Longmao. Advances in studies of the mechanical performance of cellular metals and related sandwich structures[J]. Mechanics in Engineering, 2015, 37(1):1-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxysj201501001
    [3] 卢天健, 刘涛, 邓子辰.多孔金属材料多功能化设计的若干进展[J].力学与实践, 2008, 30(1):1-9. http://d.old.wanfangdata.com.cn/Periodical/lxysj200801001

    Lu Tianjian, Liu Tao, Deng Zichen. Multifunctional design of cellular metals: A review[J]. Mechanics in Engineering, 2008, 30(1):1-9. http://d.old.wanfangdata.com.cn/Periodical/lxysj200801001
    [4] Zhu F, Zhao L, Lu G, et al. Deformation and failure of blast-loaded metallic sandwich panels-experimental investigations[J]. International Journal of Impact Engineering, 2008, 35(8):937-951. doi: 10.1016/j.ijimpeng.2007.11.003
    [5] Tilbrook M T, Radford D D, Deshpande V S, et al. Dynamic crushing of sandwich panels with prismatic lattice cores[J]. International Journal of Solids & Structures, 2007, 44(18/19):6101-6123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f2d5eae90abc5ae59aa65782008822f9
    [6] Wang D. Impact behavior and energy absorption of paper honeycomb sandwich panels[J]. International Journal of Impact Engineering, 2009, 36(1):110-114. doi: 10.1016/j.ijimpeng.2008.03.002
    [7] Main J A, Gazonas G A. Uniaxial crushing of sandwich plates under air blast: Influence of mass distribution[J]. International Journal of Solids & Structures, 2008, 45(7/8):2297-2321. http://cn.bing.com/academic/profile?id=e170915996f3f069565bd24027244749&encoded=0&v=paper_preview&mkt=zh-cn
    [8] Qiu X, Deshpande V S, Fleck N A. Dynamic response of a clamped circular sandwich plate subject to shock loading[J]. Journal of Applied Mechanics, 2004, 71(90):637-645. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e79d6ef4ef191ce13660d0df9c3826c3
    [9] Xue Z, Hutchinson J W. Preliminary assessment of sandwich plates subject to blast loads[J]. International Journal of Mechanical Sciences, 2003, 45(4):687-705. doi: 10.1016/S0020-7403(03)00108-5
    [10] Fleck N A, Deshpande V S. The resistance of clamped sandwich beams to shock loading[J]. Journal of Applied Mechanics, 2004, 71(3):386-401. doi: 10.1115/1.1629109
    [11] Radford D D, Deshpande V S, Fleck N A. The use of metal foam projectiles to simulate shock loading on a structure[J]. International Journal of Impact Engineering, 2005, 31(9):1152-1171. doi: 10.1016/j.ijimpeng.2004.07.012
    [12] Radford D D, Fleck N A, Deshpande V S. The response of clamped sandwich beams subjected to shock loading[J]. International Journal of Impact Engineering, 2006, 32(6):968-987. doi: 10.1016/j.ijimpeng.2004.08.007
    [13] 敬霖, 王志华, 宋延泽, 等.泡沫金属子弹撞击载荷下多孔金属夹芯板的动态响应[J].振动与冲击, 2011, 30(12):22-27. doi: 10.3969/j.issn.1000-3835.2011.12.005

    Jing Lin, Wang Zhihua, Song Yanze, et al. Dynamic response of a cellular metallic sandwich panel subjected to metal foam projectile impact[J]. Journal of Vibration and Shock, 2011, 30(12):22-27. doi: 10.3969/j.issn.1000-3835.2011.12.005
    [14] 宋延泽, 王志华, 赵隆茂, 等.泡沫金属子弹冲击下多孔金属夹芯板动力响应研究[J].兵工学报, 2011, 32(1):1-7. http://d.old.wanfangdata.com.cn/Periodical/bgxb201101001

    Song Yanze, Wang Zhihua, Zhao Longmao, et al. Investigation on dynamic response of sandwich plate to the impact of cellular metallic projectile[J]. Acta Armamentarii, 2011, 32(1):1-7. http://d.old.wanfangdata.com.cn/Periodical/bgxb201101001
    [15] Dou Z Y, Jiang L T, Wu G H, et al. High strain rate compression of cenosphere-pure aluminum syntactic foams[J]. Scripta Materialia, 2007, 57(10):945-948. doi: 10.1016/j.scriptamat.2007.07.024
    [16] 张博一, 王伟, 武高辉.空心微珠/Al复合材料的动态压缩力学性能和吸能特性[J].爆炸与冲击, 2014, 34(1):28-34. doi: 10.3969/j.issn.1001-1455.2014.01.006

    Zhang Boyi, Wang Wei, Wu Gaohui. Dynamic-compression mechanical properties and energy-absorption capability of fly-ash cenospheres-reinforced 1199Al-matrix composite foam[J]. Explosion and Shock Waves, 2014, 34(1):28-34. doi: 10.3969/j.issn.1001-1455.2014.01.006
  • 加载中
图(19) / 表(7)
计量
  • 文章访问数:  4190
  • HTML全文浏览量:  1353
  • PDF下载量:  688
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-11
  • 修回日期:  2016-04-11
  • 刊出日期:  2017-07-25

目录

    /

    返回文章
    返回