Explosion energy distribution by side initiation and its effects on rock fragmentation
-
摘要: 为了提高不同岩石中爆破破岩的能量利用率,分析了导爆索侧向起爆和一端起爆条件下的爆炸冲击能和爆生气体能的分布规律,并结合响水沟过渡料爆破开采实验,对比了这两种起爆方式下的爆破块度级配曲线。结果表明,侧向起爆和一端起爆条件下的爆炸冲击能和爆生气体能的分布有着很大差异。可以通过改变起爆方式来调整用于爆破破岩的冲击能和气体能的比例,以提高爆破破岩的能量利用率。此在基础上,提出了不同强度岩体中起爆方式选择的原则,导爆索侧向起爆适用于软岩和裂隙岩体的爆破破碎以及轮廓爆破,而在硬岩中的级配料爆破开采则不宜采用侧向起爆。Abstract: To improve the energy utilization and fragmentation effect in rock blasting, the explosion energy partitions of end initiation and continuous side initiation were analyzed. In addition, field blasting tests were conducted in Xiangshuigou Quarry, and the results show significant differences in the partition of shock and gas energy between the two initiation methods. The effective energy utilization of these two initiation methods in different rocks varies considerably. On this basis, a selection principle of initiation methods for rocks with different intensities was put forward. The continuous side initiation with a detonating cord is advantageous in soft and fissured rocks and contour blasting, while blasting for graded material in hard rock, the end initiation is recommended instead of the side initiation.
-
Key words:
- rock blasting /
- fragmentation effect /
- initiation method /
- energy partition /
- shock energy /
- gas energy
-
表 1 长河坝过渡料开采爆破实验参数
Table 1. Blasting parameters for transition material excavation field tests
爆破参数 编号A、B 编号C、D 侧向起爆 一端起爆 侧向起爆 一端起爆 炮孔直径/mm 120 120 90 90 台阶高度H/m 15.0 15.0 15.0 15.0 超深Δh/m 1.5 1.5 1.5 1.5 钻孔深度L/m 16.5 16.5 16.5 16.5 钻孔倾角θ/(°) 90 90 90 90 孔距×排距/(m×m) 2.3×2.0 2.3×2.0 1.85×1.85 1.85×1.85 堵塞长度Ls/m 2.0 2.0 2.0 2.0 单耗q/(kg·m-3) 2.2 2.2 1.8 1.8 装药结构 连续耦合 连续耦合 连续不耦合 连续不耦合 起爆网络 V形起爆 V形起爆 V形起爆 V形起爆 炸药品种 散装乳化炸药 散装乳化炸药 2#岩石乳化炸药 2#岩石乳化炸药 表 2 4组爆破破碎结果统计
Table 2. Summary of fragmentation results of four groups field tests
实验区域 起爆方式 d50/mm Cu Cc 产出率/% dmax/mm d < 5 mm d>110 mm A 侧向起爆 111 11.21 2.55 5.20 29.03 520 一端起爆 75 24.72 2.90 11.50 11.37 320 B 侧向起爆 100 12.45 1.62 5.56 27.76 500 一端起爆 86 30.29 2.74 11.90 11.55 310 C 侧向起爆 114 10.00 2.66 4.68 27.12 470 一端起爆 105 12.64 2.83 8.26 11.10 < 300 D 侧向起爆 73 15.40 2.62 8.63 16.56 < 300 一端起爆 64 21.67 2.79 12.25 7.72 < 300 -
[1] Liang K, Zhang J, Liu C. Detonation propagation characteristics of superposition explosive materials[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2003, 18(1):80-82. doi: 10.1007/BF02835096 [2] Lownds C M, Du Plessis M P. Behaviour of explosives in intermediate-diameter boreholes[J]. Quarry Management, 1984, 11:799-804. https://www.sciencedirect.com/science/article/pii/S1365160916300752 [3] Duvall W I, Pugliese J M. Comparison between end and axial methods of detonating an explosive in granite[M]. Pittsburgh: US Department of the Interior, Bureau of Mines, 1965. [4] 卢文波, 陶振宇.预裂爆破中炮孔压力变化历程的理论分析[J].爆炸与冲击, 1994, 14(2):140-147. http://www.bzycj.cn/article/id/10619Lu Wenbo, Tao Zhenyu. Theoretical analysis of the pressure-variation in borehole for pre-splitting explosion[J]. Explosion and Shock Waves, 1994, 14(2):140-146. http://www.bzycj.cn/article/id/10619 [5] 冷振东, 卢文波, 陈明, 等.岩石钻孔爆破粉碎区计算模型的改进[J].爆炸与冲击, 2015, 35(1):101-107. doi: 10.11883/1001-1455(2015)01-0101-07Leng Zhendong, Lu Wenbo, Chen Ming, et al. Improved calculation model for the size of crushed zone around blasthole[J]. Explosion and Shock Waves, 2015, 35(1):101-107. doi: 10.11883/1001-1455(2015)01-0101-07 [6] 颜事龙, 陈叶青.岩石中集中装药爆炸能量分布的计算[J].爆破器材, 1993, 77(6):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-BPQC199306000.htmYan Shilong, Chen Yeqing. Distribution of the explosive energy of concentrated charge in rock blasting[J]. Explosive Materials, 1993, 77(6):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-BPQC199306000.htm [7] 宗琦, 杨吕俊.岩石中爆炸冲击波能量分布规律初探[J].爆破, 1999, 16(2):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-BOPO902.000.htmZong Qi, Yang Lüjun. Shock energy distribution of column charge in rock[J]. Blasting, 1999, 16(2):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-BOPO902.000.htm [8] Kurokawa K, Hashimoto K, Tabuchi M. The experimental study on the effect of performances of explosives on rock fracture[C]//Proceedings of the Fourth International Symposium on Rock Fragmentation by Blasting, 1993: 379-386. [9] Brinkman J R. Separating shock wave and gas expansion breakage mechanisms[C]//Proceedings of the Second International Symposium on Rock Fragmentation by Blasting, 1989: 6-15. [10] Hustrulid W A. Blasting principles for open pit mining: Theoretical foundations[M]. Rotterdam: Balkema, 1999:205-207. [11] Cook M A. The science of industrial explosives[M]. Salt Lake City: IRECO Chemicals, 1974:120-123. [12] Long Y, Zhong M S, Xie Q M, et al. Influence of initiation point position on fragmentation by blasting in iron ore[C]//Proceedings of the Tenth International Symposium on Rock Fragmentation by Blasting, 2012: 111-116. [13] 郑炳旭.经山寺铁矿优化开采综合爆破技术[J].岩石力学与工程学报, 2012, 31(8):1530-1536. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201208004.htmZheng Bingxu. Multiple blasting techniques for exploitation optimizion of jinshan temple iron mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8):1530-1536. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201208004.htm [14] 邢光武, 郑炳旭.采石场爆破块度分区及块度预测研究[J].地下空间与工程学报, 2009, 5(6):1258-1261. http://d.old.wanfangdata.com.cn/Periodical/dxkj200906036Xing Guangwu, Zheng Bingxu. Study on prediction of block zoning and block size in quarry blasting[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(6):1258-1261. http://d.old.wanfangdata.com.cn/Periodical/dxkj200906036 [15] Junk N M. Overburden blasting takes on new dimensions[J]. Coal Age, 1972, 77(1):92-96. [16] Singh S P. Mechanism of tracer blasting[J]. Geotechnical and Geological Engineering, 1996, 14(1):41-50. [17] Lin Shaochi. Cylindrical shock waves produced by instantaneous energy release[J]. Journal of Applied Physics, 1954, 25(1):54-57. doi: 10.1063/1.1721520 [18] Lownds C M. The strength of explosives[C]//Proceedings of the International Conference of the South African Institute of Mining and Metallurgy: Planning and Operation of Open-Pit and Strip Mines, 1986: 151159. [19] 许金余, 刘石.大理岩冲击加载试验碎块的分形特征分析[J].岩土力学, 2012, 33(11):3225-3229. http://d.old.wanfangdata.com.cn/Periodical/ytlx201211005Xu Jinyu, Liu Shi. Research on fractal characteristics of marble fragments subjected to impact loading[J]. Rock and Soil Mechanics, 2012, 33(11):3225-3229. http://d.old.wanfangdata.com.cn/Periodical/ytlx201211005 [20] 周传波.基于回归分析理论的爆破块度预测模型研究[J].爆破, 2003, 20(4):1-4. http://d.old.wanfangdata.com.cn/Periodical/bp200304001Zhou Chuanbo. Model of predicting the blasting fragmentation based on regressional analysis[J]. Blasting, 2003, 20(4):1-4. http://d.old.wanfangdata.com.cn/Periodical/bp200304001 期刊类型引用(16)
1. 谭铭. 炸药性能对爆破地震波传播与能量衰减规律影响研究. 中国矿业. 2024(01): 193-199 . 百度学术
2. 王洪刚,贾永胜,余浩天,罗鹏,黄炳林,周俊汝. 基于根底控制的深孔台阶爆破超深优选方法. 爆破. 2024(01): 44-50 . 百度学术
3. 冷振东,高启栋,卢文波,陈明,周桂松,范勇. 岩石钻孔爆破能量调控理论与应用技术研究进展. 金属矿山. 2023(05): 64-76 . 百度学术
4. 金鑫,高佳明,苏宏伟,陈化南,毕京九. 露天矿深孔台阶爆破间隔装药爆破试验研究. 爆破. 2023(02): 42-47 . 百度学术
5. 刘万通,徐振洋,张久洋,王雪松,刘鑫. 孔底间隔介质对岩体损伤规律研究. 有色金属工程. 2023(10): 82-94 . 百度学术
6. 曹俊. 高台阶金属矿山爆破研究与应用. 中国矿山工程. 2022(01): 41-44+76 . 百度学术
7. 周春国,王荣富,刘兴堂,封磊,刘刚. 地下厂房岩壁梁爆破松弛试验及稳定性影响研究. 岩土工程技术. 2022(06): 502-506 . 百度学术
8. 周海孝,高启栋,王亚琼,冷振东,陈明. 水电站扩机工程中预裂孔与主爆孔诱发的爆破振动比较分析. 爆破. 2021(02): 58-66 . 百度学术
9. 雷振,张智宇,黄永辉,周继国,白莹. 岩石爆破破碎能耗随抵抗线的变化规律. 爆炸与冲击. 2021(07): 151-160 . 本站查看
10. 高启栋,靳军,王亚琼,卢文波,冷振东,陈明. 孔内起爆位置对爆破振动场分布的影响作用规律. 爆炸与冲击. 2021(10): 138-152 . 本站查看
11. 郭德勇,张超,朱同功,李广涛. 深孔聚能爆破起爆位置对煤层致裂增透的影响. 煤炭学报. 2021(S1): 302-311 . 百度学术
12. 杨仁树,李炜煜,杨国梁,马鑫民. 炸药类型对富铁矿爆破效果影响的试验研究. 爆炸与冲击. 2020(06): 96-107 . 本站查看
13. 高启栋,卢文波,冷振东,王亚琼,孙鹏昌,陈明. 岩石爆破中孔内起爆位置对爆炸能量传输的调控作用研究. 岩土工程学报. 2020(11): 2050-2058 . 百度学术
14. 于霖,盛希,刘强,赵继亮,刘金峰. 导爆索组件一体化防热方案设计及验证. 兵器装备工程学报. 2019(01): 39-43 . 百度学术
15. 崔新男,汪旭光,张小军,陈志远. 基于数字图像处理技术的爆生气体膨胀规律研究. 有色金属(矿山部分). 2019(04): 119-123 . 百度学术
16. 冷振东,范勇,卢文波,高启栋,周俊汝. 孔内双点起爆条件下的爆炸能量传输与破岩效果分析. 岩石力学与工程学报. 2019(12): 2451-2462 . 百度学术
其他类型引用(11)
-