接触爆炸荷载作用下溢流坝的抗爆性能

徐强 曹阳 陈健云

徐强, 曹阳, 陈健云. 接触爆炸荷载作用下溢流坝的抗爆性能[J]. 爆炸与冲击, 2017, 37(4): 677-684. doi: 10.11883/1001-1455(2017)04-0677-08
引用本文: 徐强, 曹阳, 陈健云. 接触爆炸荷载作用下溢流坝的抗爆性能[J]. 爆炸与冲击, 2017, 37(4): 677-684. doi: 10.11883/1001-1455(2017)04-0677-08
Xu Qiang, Cao Yang, Chen Jianyun. Antiknock performance of an overflow dam subjected to contact explosion[J]. Explosion And Shock Waves, 2017, 37(4): 677-684. doi: 10.11883/1001-1455(2017)04-0677-08
Citation: Xu Qiang, Cao Yang, Chen Jianyun. Antiknock performance of an overflow dam subjected to contact explosion[J]. Explosion And Shock Waves, 2017, 37(4): 677-684. doi: 10.11883/1001-1455(2017)04-0677-08

接触爆炸荷载作用下溢流坝的抗爆性能

doi: 10.11883/1001-1455(2017)04-0677-08
基金项目: 

国家重点基础研究发展计划“973”项目 2013CB035905

国家重点研发计划项目 2017YFC0404900

国家自然科学基金重点项目 51138001

国家自然科学基金重点项目 51178081

辽宁省教育厅重点实验室项目 LZ2015022

中央高校基本科研业务费专项资金项目 DUT15LK34

中央高校基本科研业务费专项资金项目 DUT14QY10

详细信息
    作者简介:

    徐强(1982-),男,博士,副教授

    通讯作者:

    陈健云,chenjydg@dlut.edu.cn

  • 中图分类号: O383.1

Antiknock performance of an overflow dam subjected to contact explosion

  • 摘要: 以黄登重力坝的溢流坝为研究背景,考虑混凝土的高应变率效应,运用Lagrange-Euler耦合算法建立大坝-库水-空气-炸药全耦合数值模型,研究溢流坝在接触爆炸荷载作用下的抗爆性能。分析满库与空库时溢流坝在爆炸冲击波作用下的动力响应及损伤程度,并进一步研究满库时大坝在不同炸点的水下接触爆炸荷载作用下的动力响应及损伤分布。研究结果表明,满库时水下爆炸比空库时爆炸的动力响应及损伤程度大得多;溢流坝的抗爆薄弱部位主要集中在溢流道顶部及坝体上游折坡处。研究溢流坝的抗爆性能时应重点研究满库时水下爆炸对大坝的破坏特性。
  • 图  1  RHT本构模型

    Figure  1.  RHT consititute model

    图  2  溢流坝全耦合模型

    Figure  2.  Coupled model of overflow dam

    图  3  爆炸时程对比分析

    Figure  3.  Contrastive analysis of time-histories subjected to explosion

    图  4  损伤过程对比分析

    Figure  4.  Contrastive analysis of the damage propagation process

    图  5  测点2时程对比分析

    Figure  5.  Contrastive analysis of time-histories of gauge point 2

    图  6  测点2加速度反应谱对比

    Figure  6.  Contrastive analysis of acceleration response spectrum of gauge point 2

    图  7  不同炸点爆炸时坝体的损伤情况对比

    Figure  7.  Contrastive analysis of damage propagation processes of overflow dam at different explosion points

    表  1  修正的RHT本构模型参数

    Table  1.   Modified parameters of RHT constitutive model

    A N pspall* Q0 BQ B M εminf σPTF/MPa
    1.92 0.76 0.1 0.69 0.004 8 0.7 0.8 0.001 5
    下载: 导出CSV
  • [1] 丁阳, 方磊, 李忠献, 等.防恐建筑结构抗爆防护分类设防标准研究[J].建筑结构学报, 2013, 34(4):57-64. http://d.old.wanfangdata.com.cn/Periodical/zhzyfdc201633065

    Ding Yang, Fang Lei, Li Zhongxian, et al. Research on categorized explosion protection criterion of anti-terrorism building structures[J]. Journal of Building Structures, 2013, 34(4):57-64. http://d.old.wanfangdata.com.cn/Periodical/zhzyfdc201633065
    [2] Georgin J F, Reynouard J M. Modeling of structures subjected to impact: Concrete behaviour under high strain rate[J]. Cement and Concrete Composites, 2003, 25(1):131-143. doi: 10.1016/S0958-9465(01)00060-9
    [3] Zhang Q, Lin D C, Bai C H, et al. Correlations of blast damage to ground surface targets with explosion seismic effect[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(7):519-525. doi: 10.1016/j.soildyn.2004.03.003
    [4] Zhao C F, Chen J Y. Damage mechanism and mode of square reinforced concrete slab subjected to blast loading[J]. Theoretical and Applied Fracture Mechanics, 2013, 63/64(1):54-62. https://www.sciencedirect.com/science/article/pii/S0167844213000372
    [5] Zhao C F, Chen J Y, Wang Y, et al. Damage mechanism and response of reinforced concrete containment structure under internal blast loading[J]. Theoretical and Applied Fracture Mechanics, 2012, 61(1):12-20. https://www.sciencedirect.com/science/article/pii/S0167844212000638
    [6] 李鸿波, 张爱华, 陈云敏.爆炸冲击荷载作用下重力坝三维各向异性脆性动力损伤有限元分析[J].岩石力学与工程学报, 2006, 25(8):1598-1605. doi: 10.3321/j.issn:1000-6915.2006.08.012

    Li Hongbo, Zhang Aihua, Chen Yunmin. 3d finite element analysis of anisotropic brittle dynamic damage in gravity dam under blast-impact load[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(8):1598-1605. doi: 10.3321/j.issn:1000-6915.2006.08.012
    [7] 薛新华, 李鹏.爆炸荷载作用下拱坝动力响应分析[J].水利学报, 2015, 46(增刊1):107-110. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY201507001426.htm

    Xue Xinhua, Li Peng. Dynamic response analysis of arch dam under blast load[J]. Journal of Hydraulic Engineering, 2015, 46(Suppl 1);107-110. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY201507001426.htm
    [8] 徐俊祥, 刘西拉.水中爆炸冲击下混凝土坝动力响应的全耦合分析[J].上海交通大学学报, 2008, 42(6):1001-1004. doi: 10.3321/j.issn:1006-2467.2008.06.032

    Xu Junxiang, Liu Xila. Full coupled simulation of concrete dams subjected to underwater explosion[J]. Journal of Shanghai Jiaotong University, 2008, 42(6):1001-1004. doi: 10.3321/j.issn:1006-2467.2008.06.032
    [9] Yu T T. Dynamical response simulation of concrete dam subjected to underwater contact explosion load[C]//2009 WRI World Congress on Computer Science and Information Engineering. Los Angeles, California, 2009: 769-774.
    [10] 张社荣, 王高辉.混凝土重力坝抗爆性能及抗爆措施研究[J].水利学报, 2012, 43(10):1202-1213. http://cdmd.cnki.com.cn/Article/CDMD-10056-1015039423.htm

    Zhang Sherong, Wang Gaohui. Study on the antiknock performance and measures of concrete gravity dam[J]. Journal of Hydraulic Engineering, 2012, 43(10):1202-1213. http://cdmd.cnki.com.cn/Article/CDMD-10056-1015039423.htm
    [11] 张社荣, 王高辉.浅水爆炸冲击荷载下高拱坝抗爆性能分析[J].天津大学学报, 2013, 46(4):315-321. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201304005

    Zhang Sherong, Wang Gaohui. Antiknock performance of high arch dam subjected to shallow water explosion[J]. Journal of Tianjin University, 2013, 46(4):315-321. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201304005
    [12] Zhang S R, Wang G H, Yu X R. Seismic cracking analysis of concrete gravity dams with initial cracks using the extended finite element method[J]. Engineering Structures, 2013, 56(6):528-543. https://www.sciencedirect.com/science/article/pii/S0141029613002605
    [13] 张社荣, 孔源, 王高辉, 等.混凝土重力坝水下接触爆炸下的毁伤特性分析[J].水利学报, 2014, 45(9):1057-1065. http://d.old.wanfangdata.com.cn/Periodical/slxb201409006

    Zhang Shenrong, Kong Yuan, Wang Gaohui, et al. Damage characteristic analysis of concrete gravity dams subjected to underwater contact explosion[J]. Journal of Hydraulic Engineering, 2014, 45(9):1057-1065. http://d.old.wanfangdata.com.cn/Periodical/slxb201409006
    [14] 李本平.制导炸弹连续打击下混凝土重力坝的破坏效应[J].爆炸与冲击, 2010, 30(2):220-224. doi: 10.11883/1001-1455(2010)02-0220-05

    Li Benping. Damage effect of a concrete gravity dam under continuous attacks of guided bombs[J]. Explosion and Shock Waves, 2010, 30(2):220-224. doi: 10.11883/1001-1455(2010)02-0220-05
    [15] 张社荣, 杨明, 王高辉.水下爆炸冲击下重力拱坝的破坏特性[J].水电能源科学, 2014, 32(7):69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201407017.htm

    Zhang Sherong, Yang ming, Wang Gaohui. Failure characteristics of gravity arch dam subjected to underwater explosion[J]. Water Resources and Power, 2014, 32(7):69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201407017.htm
    [16] 陆路, 李昕, 周晶.水下核爆作用下混凝土重力坝模型破坏试验[J].大连理工大学学报, 2011, 51(6):854-860. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013198498.htm

    Lu Lu, Li Xin, Zhou Jing. Destructive tests of concrete gravity dam underwater nuclear explosion[J]. Journal of Dalian University of Technology, 2011, 51(6):854-860. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013198498.htm
    [17] Malvar L J, Ross C A. A review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 95(6):735-739. https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=418
    [18] Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates[J]. Materials and Structures, 1991, 24(6):425-450. doi: 10.1007/BF02472016
    [19] Wang W, Zhang D, Lu F, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading[J]. International Journal of Impact Engineering, 2012, 49(2):158-164. https://www.sciencedirect.com/science/article/pii/S0734743X12000759
    [20] 匡志平, 袁训康.RHT混凝土本构模型强度参数分析与模拟[J].力学季刊, 2012, 33(1):158-163. doi: 10.3969/j.issn.0254-0053.2012.01.023

    Kuang Zhiping, Yuan Xunkang. The analysis and simulation for the strength parameters[J]. Chinese Quarterly of Mechanics, 2012, 33(1):158-163. doi: 10.3969/j.issn.0254-0053.2012.01.023
    [21] Tu Z G, Lu Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations[J]. International Journal of Impact Engineering, 2009, 36(1):132-146. doi: 10.1016/j.ijimpeng.2007.12.010
    [22] Shin Y S, Chisum J E. Modeling and simulation of underwater shock problems using a coupled Lagrangian-Eulerian analysis approach[J]. Shock and Vibration, 1997, 4(1):1-10.
    [23] Mair H U. Hydrocodes for structural response to underwater explosions[J]. Shock and Vibration, 1999, 6(2):81. doi: 10.1155/1999/587105
    [24] Van der Veen W A. Simulation of a compartmented airbag deployment using an explicit, coupled Euler/Lagrange method with adaptive Euler domains[A]. NAFEMS, Florida, 2003.
    [25] Mair H U. Hydrocode methodologies for underwater explosion structure/medium interaction[C]//Proceeding of the 66th Shock and Vibration Symposium. Virginia, 1995, 2: 227-248.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  4113
  • HTML全文浏览量:  1265
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-25
  • 修回日期:  2016-04-11
  • 刊出日期:  2017-07-25

目录

    /

    返回文章
    返回