Numerical analysis of spall response in aluminum with helium bubbles
-
摘要: 因自辐照效应的影响,一些材料内部会产生大量的氦泡,关注这些氦泡对材料力学性能的影响是目前损伤破坏研究中的重要问题之一。结合相关文献的实验结果,采用耦合材料初始损伤、孔洞尺寸及惯性影响的损伤模型,对该问题进行了数值分析。结果显示:氦泡的内压及材料变形中温度的变化对损伤发展的影响很小;材料的初始损伤越大,材料内部应力减小得越快,损伤增长得越慢;因惯性的影响,初始氦泡越大,损伤增长相对较慢。因此,分析含氦泡材料的层裂损伤问题需要重点关注材料初始氦泡大小、初始损伤以及损伤演化过程中惯性的影响。Abstract: The creation of helium atoms is one of the main damaging mechanisms in neutron irradiated metals and is therefore a major concern in related scientific research. Recent researches under static loading conditions showed that the creation of helium atoms in metals is of great academic significance, for their precipitation into bubbles can cause substantial deterioration of the mechanical properties of materials. In this paper, based on experimental results so far published, a damage model is adopted combining inertial effect, initial void size and damage, to investigate the influence of helium bubbles in aluminum on its dynamic spall properties. The numerical calculation results show that the damage growth is insensitive to the pressure inside the bubble and the temperature produced by plastic deformation; the inner stress decreases more quickly and the porosity increases more slowly with the increase of the initial damage; the damage increases more slowly with the increase of the initial size of the helium bubble due to the inertial effect. Therefore, the study on the spall response of metals with helium bubbles should focus on the initial size of the helium bubble, the initial damage and the inertial effect at high loading rates.
-
Key words:
- helium bubbles /
- spall response /
- aluminum /
- numerical analysis
-
-
[1] Chen X, Asay J R, Dwivedi S K, et al. Spall behavior of aluminum with varying microstructures[J]. Journal of Applied Physics, 2006, 99(2):023528. doi: 10.1063/1.2165409 [2] Trivedi P B, Asay J R, Gupta Y M, et al. Influence of grain size on the tensile response of aluminum under plate-impact loading[J]. Journal of Applied Physics, 2007, 102(8):083513. doi: 10.1063/1.2798497 [3] Escobedo J P, Dennis-Koller D, Cerreta E K, et al. Grain size and boundary structure on the dynamic tensile response of copper[J]. Journal of Applied Physics, 2011, 110(3):033513. doi: 10.1063/1.3607294 [4] 张凤国, 周洪强.晶粒尺度对延性金属材料层裂损伤的影响[J].物理学报, 2013, 62(16):164601. doi: 10.7498/aps.62.164601Zhang Fengguo, Zhou Hongqiang. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metall[J]. Acta Physica Sinica, 2013, 62(16):164601. doi: 10.7498/aps.62.164601 [5] Trinkaus H, Singh B N. Helium accumulation in metals during irradiation-where do we stand?[J].Journal of Nuclear Materials, 2003, 323(2/3):229-242. http://www.sciencedirect.com/science/article/pii/S0022311503004033 [6] Marian J, Wirth B D, Perlado M. Mechanism of formation and growth of 〈100〉 interstitial loops in ferritic materials[J]. Physics Review Letters, 2002, 88(25):255507. doi: 10.1103/PhysRevLett.88.255507 [7] Moreno D, Eliezer D. Structural changes in a copper alloy due to helium implantation[J]. Scripta Materialia, 1996, 35(12):1385-1389. doi: 10.1016/S1359-6462(96)00314-4 [8] Singh B N, Leffers T. Implications of the variation in microstructure caused by changes in helium generation rate and other irradiation parameters[J]. Radiation Effects and Defects in Solids, 1987, 101(1):73-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00337578708224737 [9] Kubota A, Reisman D B, Wolfer W G. Dynamic strength of metals in shock deformation[J]. Applied Physics Letters, 2006, 88(24):241924. doi: 10.1063/1.2210799 [10] Glam B, Eliezer S, Moreno D, et al. Dynamic fracture and spall in aluminum with helium bubbles[J]. International Journal of Fracture, 2010, 163(1/2):217-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce303b4124937f5f94fc151f79eb1df1 [11] Glam B, Strauss M, Eliezer S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: Experiments and simulations[J]. International Journal of Impact Engineering, 2014, 65(4):1-12. http://www.sciencedirect.com/science/article/pii/S0734743X13002030 [12] Tonks D L, Zurek A K, Thissell W R. Coalescence rate model for ductile damage in metals[J]. Journal de Physique Ⅳ, 2003, 110(9):893-898. [13] 彭辉, 李平, 裴晓阳, 等.动态损伤演化的空间不连续性实验研究[J].物理学报, 2013, 62(22):226201. doi: 10.7498/aps.62.226201Peng Hui, Li Ping, Pei Xiaoyang, et al. Experimental study of the spatial discontinuity of dynamic damage evolution[J]. Acta Physica Sinica, 2013, 62(22):226201. doi: 10.7498/aps.62.226201 [14] Zhang F G, Zhou H Q, Hu J, et al. Modelling of spall damage in ductile materials and its application to the simulation of the plate impact on copper[J]. Chinese Physics B, 2012, 21(9):094601. doi: 10.1088/1674-1056/21/9/094601 [15] 张凤国, 周洪强, 张广财, 等.惯性及弹塑性效应对延性金属材料层裂损伤的影响[J].物理学报, 2011, 60(7):074601. http://d.old.wanfangdata.com.cn/Periodical/wlxb201107066Zhang Fengguo, Zhou Hongqiang, Zhang Guangcai, et al. Inertial and elastic-plastic effect on spallation damage of ductile metals[J]. Acta Physica Sinica, 2011, 60(7):074601. http://d.old.wanfangdata.com.cn/Periodical/wlxb201107066 [16] 张凤国, 王裴, 胡晓棉, 等.爆轰加载下锡金属连续层裂损伤机理的数值分析[J].高压物理学报, 2017, 31(3):280-285. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201703009.htmZhang Fengguo, Wang Pei, Hu Xiaomian, et al. Numerical analysis of high explosive-induced multiple layers in Sn metal[J]. Chinese Journal of High Pressure Physics, 2017, 31(3):280-285. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201703009.htm [17] Johnson J N. Dynamic fracture and spallation in ductile solids[J]. Journal of Applied Physics, 1981, 52(4):2812-2825. doi: 10.1063/1.329011 [18] Shao J L, Wang P, He A M. Compression-induced stacking fault tetrahedra around He bubbles in Al[J]. Journal of Applied Physics, 2014, 116(16):163516. doi: 10.1063/1.4900784 期刊类型引用(3)
1. 郭刘伟, 汪斌, 郑贤旭, 张光昇, 杨林俊, 李强. JBO-9021炸药初始密度对爆轰波阵面曲率效应的影响. 火炸药学报. 2017(05): 51-55 . 百度学术
2. 郭刘伟, 刘宇思, 汪斌, 谷岩, 郑贤旭, 谭多望. 高温下TATB基钝感炸药爆轰波波阵面曲率效应实验研究. 含能材料. 2017(02): 138-143 . 百度学术
3. 沈飞, 王辉, 袁建飞, 任新联. CL-20基含铝炸药爆轰波阵面法向速度与曲率的关系. 火炸药学报. 2015(01): 8-11 . 百度学术
其他类型引用(2)
-
推荐阅读
混凝土中多点聚集爆炸效应起爆参数优化设计
时本军 等, 爆炸与冲击, 2025
活性材料与炸药环状复合内爆的准静态压力计算方法
朱剑雷 等, 爆炸与冲击, 2025
不同点火方式下hmx基pbx炸药反应演化过程的特征分析
楼建锋 等, 爆炸与冲击, 2024
坑道内爆炸条件下温压炸药的爆炸特性及其影响因素
纪玉国 等, 爆炸与冲击, 2024
Hns基pbx炸药爆轰驱动平板实验及产物状态方程参数确定
李淑睿 等, 高压物理学报, 2023
35 gpa斜波加载下rdx单晶炸药的动力学行为
种涛 等, 高压物理学报, 2022
20 gpa斜波压缩下pbx-14炸药的动力学响应
种涛 等, 高压物理学报, 2022
Recent advances in targeting the undruggable proteins: from drug discovery to clinical trials
Xie, Xin et al., SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2023
Experimental study on the infuence of blast hole bottom cushion medium on blasting damage characteristics and strain evolution of rock mass
ROCK MECHANICS AND ROCK ENGINEERING
Study on compressive mechanical tests and constitutive models of cortical bone under different strain rates
XU Chengyi et al., EXPLOSION AND SHOCK WAVES, 2025