Effects of inerting agent with different particle sizes onthe flame propagation of aluminum dust
-
摘要: 为探索惰化剂粒径对可燃工业粉尘火焰传播特性的影响,通过建立竖直粉尘燃烧管道实验平台,在碳酸氢钠质量分数为30%的惰化条件下,就碳酸氢钠粒径对铝粉燃烧火焰传播特性的影响进行了实验研究。结果表明:平均粒径为30 μm的碳酸氢钠粉体对平均粒径为15 μm的铝粉的火焰传播速度具有较好的抑制作用,惰性粉体与可燃工业粉尘应存在粒度匹配效应;碳酸氢钠粉体对铝粉火焰温度的惰化抑制效果与其粒径呈反比关系;碳酸氢钠粉体会减小铝粉火焰预热区厚度,预热区厚度随碳酸氢钠粒径的增加先减小后增大。此外,分析了碳酸氢钠粒径对铝粉火焰传播特性影响的作用机理。Abstract: To explore the influence of the inerting agent with different particle sizes on the flame propagation of the combustible industrial dust, by establishing a vertical dust combustion pipe experiment platform, we investigated the effects of the particle size of sodium bicarbonate on the characteristics of the burning flame propagation of aluminum powder. The results show that, under the condition of 30% mass fraction of sodium bicarbonate, the sodium bicarbonate powder with an average particle size of 30 μm has a good inhibitory effect on the flame propagation speed of aluminum powder with an average particle size of 15 μm, and there exists a correlation between the particle size of the inerting powder and the combustible industrial dust. The inerting inhibiting effect of sodium bicarbonate powder on the flame temperature of aluminum is inversely proportionate to its particle size. It was found that sodium bicarbonate powder can decrease the thickness of the preheating zone of aluminum powder flame, which decreases at first and then increases with the increase of the particle size of the sodium bicarbonate. Finally, we also examined the mechanism underlying the influence of sodium bicarbonate particle size on the flame propagation of aluminum powder.
-
Key words:
- inerting agent /
- particle size /
- aluminum powder /
- burning /
- flame propagation
-
表 1 实验样品参数
Table 1. Specific parameters of the sample
样品名称 分子式 相对分子质量 纯度/% 级别 实验用量/g 铝粉 Al 26.98 99.0 分析纯 0.9 碳酸氢钠 NaHCO3 84.01 99.5 分析纯 0.4 -
[1] 多英全, 刘垚楠, 胡馨升.2009~2013年我国粉尘爆炸事故统计分析研究[J].中国安全生产科学技术, 2015, 11(2):186-190. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201502040Duo Yingquan, Liu Yaonan, Hu Xinsheng. Statistical analysis on dust explosion accidents occurring in China during 2009-2013[J]. Journal of Safety Science and Technology, 2015, 11(2):186-190. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201502040 [2] 张超光, 蒋军成, 郑志琴.粉尘爆炸事故模式及其预防研究[J].中国安全科学学报, 2005, 15(6):73-76. doi: 10.3969/j.issn.1003-3033.2005.06.017Zhang Chaoguang, Jiang Juncheng, Zheng Zhiqin. Study on the mode and prevention of dust explosion accident[J]. China Safety Science Journal, 2005, 15(6):73-76. doi: 10.3969/j.issn.1003-3033.2005.06.017 [3] Amyotte P R, Mintz K J, Peeg M J. Solid inerrant and their use in dust explosion prevention and mitigation[J]. Trans IChemE Part B, 1995, 73:89-100. [4] Amrogowicz J, Kordylewski W. Effectiveness of dust explosion suppression by carbonates and phosphates[J]. Combustion & Flame, 1991, 85(3):520-522. http://cn.bing.com/academic/profile?id=1a04e3968e6ebe8dd5560926fb8fd3bf&encoded=0&v=paper_preview&mkt=zh-cn [5] 谢波, 王克全.工业粉尘爆炸抑制技术研究现状及存在的问题[J].矿业安全与环保, 2000, 27(1):13-15. doi: 10.3969/j.issn.1008-4495.2000.01.005Xie Bo, Wang Kequan. Present study status of industrial dust explosion suppression techniques and existent problems[J]. Mining Safety & Environmental Protection, 2000, 27(1):13-15. doi: 10.3969/j.issn.1008-4495.2000.01.005 [6] 伍毅, 袁旌杰, 蒯念生, 等.碳酸盐对密闭空间粉尘爆炸压力影响的试验研究[J].中国安全科学学报, 2010, 20(10):92-96. doi: 10.3969/j.issn.1003-3033.2010.10.017Wu Yi, Yuan Jingjie, Kuai Niansheng, et al. Effects of carbonates on dust explosion pressure in closed vessel[J]. China Safety Science Journal, 2010, 20(10):92-96. doi: 10.3969/j.issn.1003-3033.2010.10.017 [7] 蔡周全, 张引合.干粉灭火剂粒度对抑爆性能的影响[J].矿业安全与环保, 2001, 28(4):14-16. doi: 10.3969/j.issn.1008-4495.2001.04.007 [8] 韦伟, 翁春生.铝粉/空气二维黏性两相爆轰的数值模拟[J].爆炸与冲击, 2015, 35(1):29-35. doi: 10.11883/1001-1455(2015)01-0029-07Wei Wei, Weng Chunsheng. Numerical simulation for aluminum/air two-dimensional viscous two-phase detonation[J]. Explosion and Shock Waves, 2015, 35(1):29-35. doi: 10.11883/1001-1455(2015)01-0029-07 [9] 曹卫国, 徐森, 梁济元, 等.煤粉尘爆炸过程中火焰的传播特性[J].爆炸与冲击, 2014, 34(5):586-593. doi: 10.11883/1001-1455(2014)05-0586-08Cao Weiguo, Xu Sen, Liang Jiyuan, et al. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion and Shock Waves, 2014, 34(5):586-593. doi: 10.11883/1001-1455(2014)05-0586-08 [10] 李招宁, 王永国, 胡栋, 等.铝粉快速反应光谱中AlO B2Σ+→X2Σ+发射光谱的研究[J].原子与分子物理学报, 1996, 13(3):69-75. http://www.cnki.com.cn/Article/CJFDTOTAL-YZYF603.011.htmLi Zhaoning, Wang Yongguo, Hu Dong, et al. A study of the AlO (B2Σ+→X2Σ+) band system from fast reaction of aluminium dust[J]. Chinese Journal of Atomic and Molecular Physics, 1996, 13(3):69-75. http://www.cnki.com.cn/Article/CJFDTOTAL-YZYF603.011.htm [11] 孙金华.PMMA微粒子云中传播火焰的基本结构[J].热科学与技术, 2004, 3(1):76-80. doi: 10.3969/j.issn.1671-8097.2004.01.017Sun Jinhua. Structure of flame propagating through PMMA particle cloud[J]. Journal of Thermal Science and Technology, 2004, 3(1):76-80. doi: 10.3969/j.issn.1671-8097.2004.01.017 [12] 孙金华, 卢平, 刘义.空气中悬浮金属微粒子的燃烧特性[J].南京理工大学学报(自然科学版), 2005, 29(5):582-585. doi: 10.3969/j.issn.1005-9830.2005.05.020Sun Jinhua, Lu Ping, Liu Yi. Combustion behavior of metal particles suspended in air[J]. Journal of Nanjing University of Science and Technology, 2005, 29(5):582-585. doi: 10.3969/j.issn.1005-9830.2005.05.020 [13] 丁以斌, 孙金华, 何学超, 等.锆粉尘云的火焰传播特性[J].燃烧科学与技术, 2010, 16(4):353-357. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201004011Ding Yibin, Sun Jinhua, He Xuechao, et al. Flame propagation characteristic of zirconium particle cloud[J]. Journal of Combustion Science and Technology, 2010, 16(4):353-357. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201004011 [14] 陈先锋.丙烷-空气预混火焰微观结构及加速传播过程中的动力学研究[D].合肥: 中国科学技术大学, 2007. [15] 高伟, 阿部俊太郎, 荣建忠, 等.气流特征对水平长管内石松子粉尘爆炸火焰结构的影响[J].爆炸与冲击, 2015, 35(3):372-379. doi: 10.11883/1001-1455-(2015)03-0372-08Gao Wei, Abe Shuntaro, Rong Jianzhong, et al. Effect of airflow characteristics on flame structure for following lycopodium dust-air mixtures in a long horizontal tube[J]. Explosion and Shock Waves, 2015, 35(3):372-379. doi: 10.11883/1001-1455-(2015)03-0372-08 [16] Hertzberg M. Inhibition and extinction of coal dust and methane explosions[M]. US Department of the Interior, Bureau of Mines, 1982. [17] Gao W, Mogi T, Sun J, et al. Effects of particle size distributions on flame propagation mechanism during octadecanol dust explosions[J]. Powder Technology, 2013, 249:168-174. doi: 10.1016/j.powtec.2013.08.007 [18] Moussa R B, Guessasma M, Proust C, et al. Thermal radiation contribution to metal dust explosions[J]. Procedia Engineering, 2015, 102:714-721. doi: 10.1016/j.proeng.2015.01.172 [19] Chen X, Zhang H, Chen X, et al. Effect of dust explosion suppression by sodium bicarbonate with different granulometric distribution[J]. Journal of Loss Prevention in the Process Industries, 2017. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=660a9144d3a94c93975531afa3e6863a [20] 范宝春, 谢波, 张小和, 等.惰性粉尘抑爆过程的实验研究[J].流体力学实验与测量, 2001(4):20-25. doi: 10.3969/j.issn.1672-9897.2001.04.005Fan Baochun, Xie Bo, Zhang Xiaohe, et al. Experimental research on explosion suppression by inert particles[J]. Experiments and Measurements in Fluid Mechanics, 2001(4):20-25. doi: 10.3969/j.issn.1672-9897.2001.04.005 [21] 陈振豪, 倪文娟, 邱根跃, 等.碳酸氢钠干粉灭火机理的研究[J].消防科技, 1985(3):20-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=841710 [22] 左前明, 程卫民, 汤家轩.粉体抑爆剂在煤矿应用研究的现状与展望[J].煤炭技术, 2010, 29(11):78-80. doi: 10.3969/j.issn.1006-530X.2010.11.021Zuo Qianming, Cheng Weimin, Tang Jiaxuan. Current status and prospects of application and research of powder coal mine explosion suppression agent[J]. Coal Technology, 2010, 29(11):78-80. doi: 10.3969/j.issn.1006-530X.2010.11.021 [23] 任一丹, 刘龙, 袁旌杰, 等.粉尘爆炸中惰性介质抑制机理及协同作用[J].消防科学与技术, 2015, 34(2):158-162. doi: 10.3969/j.issn.1009-0029.2015.02.005Ren Yidan, Liu Long, Yuan Jingjie, et al. Inhibition mechanisms and synergy effects of solid inerrtants in dust explosion[J]. Fire Science and Technology, 2015, 34(2):158-162. doi: 10.3969/j.issn.1009-0029.2015.02.005