球形容器内甲烷-空气爆炸特性分析与理论计算

陆胤臣 陶刚 张礼敬

陆胤臣, 陶刚, 张礼敬. 球形容器内甲烷-空气爆炸特性分析与理论计算[J]. 爆炸与冲击, 2017, 37(4): 773-778. doi: 10.11883/1001-1455(2017)04-0773-06
引用本文: 陆胤臣, 陶刚, 张礼敬. 球形容器内甲烷-空气爆炸特性分析与理论计算[J]. 爆炸与冲击, 2017, 37(4): 773-778. doi: 10.11883/1001-1455(2017)04-0773-06
Lu Yinchen, Tao Gang, Zhang Lijing. Analysis and theoretical calculation of explosion characteristics of methane-air mixture in a spherical vessel[J]. Explosion And Shock Waves, 2017, 37(4): 773-778. doi: 10.11883/1001-1455(2017)04-0773-06
Citation: Lu Yinchen, Tao Gang, Zhang Lijing. Analysis and theoretical calculation of explosion characteristics of methane-air mixture in a spherical vessel[J]. Explosion And Shock Waves, 2017, 37(4): 773-778. doi: 10.11883/1001-1455(2017)04-0773-06

球形容器内甲烷-空气爆炸特性分析与理论计算

doi: 10.11883/1001-1455(2017)04-0773-06
基金项目: 

江苏省2015年度普通高校研究生科研创新计划项目 KYLX15_0774

详细信息
    作者简介:

    陆胤臣(1991-),男,硕士研究生

    通讯作者:

    陶刚,taogang@njtech.edu.cn

  • 中图分类号: O354.1

Analysis and theoretical calculation of explosion characteristics of methane-air mixture in a spherical vessel

  • 摘要: 为研究甲烷-空气混合物在密闭球形容器内的爆炸特性,首先利用化学平衡计算软件确定合适的燃烧产物与化学平衡温度,估算甲烷-空气混合物的最大爆炸压力。然后基于火焰增长模型,用MATLAB编辑循环语句程序,计算了甲烷-空气混合气体爆炸的压力时程曲线,通过与实验数据对比,验证了化学平衡软件计算方法与火焰增长模型的可行性,并分析了误差的产生原因。进而利用火焰增长模型推出的经验公式计算爆燃指数,发现在当量比附近与实验结果拟合程度较好。
  • 图  1  化学平衡计算所得爆炸压力值与实验的对比

    Figure  1.  Comparison of chemical equilibrium calculation results with experimental data

    图  2  层流燃烧速率与空气燃料比拟合曲线

    Figure  2.  Fitted curve of laminar flame speed vs. air fuel ratio

    图  3  未燃部分绝热指数拟合曲线

    Figure  3.  Fitted curve of specific heat ratio for unburned gas

    图  4  已燃部分绝热指数拟合曲线

    Figure  4.  Fitted curve of specific heat ratio for unburned gas

    图  5  火焰增长模型计算结果与实验值的比较

    Figure  5.  Comparison of theoretical results by flame growth model with experimental data

    表  1  球形容器内甲烷-空气混合气体的爆燃指数

    Table  1.   Deflagration index of methane-air mixture in spherical vessel

    空气燃料比 KG, exp/(MPa·m·s-1) KG/(MPa·m·s-1)
    ξ<1 ξ<0.95 ξ<0.90
    0.828 2.136 4.44118 4.21257 3.88981
    0.945 6.305 7.50427 7.00937 6.40062
    1.055 7.417 8.24091 7.87229 7.17593
    1.058 7.365 8.39706 7.84194 7.14657
    1.184 5.910 7.66787 7.17321 6.53207
    下载: 导出CSV
  • [1] Bradley D, Mitcheson A. Mathematical solutions for explosions in spherical vessels[J]. Combustion and Flame, 1976, 26(2):201-217. doi: 10.1016-0010-2180(76)90072-9/
    [2] Dahoe A E, Zevenbergen J F, Lemkowitz S M, et al. Dust explosion in spherical vessels: The role of flame thickness in the validity of the cube-root law[J]. Journal of Loss Prevention in the Process Industries, 1996, 18(9):33-44. http://cn.bing.com/academic/profile?id=1e68f2b1c6bc3ebba8fec56275eed030&encoded=0&v=paper_preview&mkt=zh-cn
    [3] Mashuga C V, Crowl D A. Flammability zone prediction using calculated adiabatic flame temperatures[J]. Process Safety Progress, 1999, 18(3):127-134. doi: 10.1002/(ISSN)1547-5913
    [4] Bulck E V D. Closed algebraic expressions for the adiabatic limit value of the explosion constant in closed volume combustion[J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1):35-42. doi: 10.1016/j.jlp.2004.10.004
    [5] Jo Y D, Crowl D A. Flame growth model for confined gas explosion[J]. Process Safety Progress, 2009, 28(2):141-146. doi: 10.1002/prs.v28:2
    [6] Jo Y D, Crowl D A. Explosion characteristics of hydrogen-air mixtures in a spherical vessel[J]. Process Safety Progress, 2010, 29(3):216-223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c97034bf2a15a249e466d1413a6d3eaf
    [7] Tao G, Crowl D A. Comparison of the maximum gas combustion pressure of hydrogen/oxygen/nitrogen between chemical equilibrium calculations and experimental data[J]. Procedia Engineering, 2013, 62:786-790. doi: 10.1016/j.proeng.2013.08.126
    [8] Dandy D S. Bioanalytical microfluidics program[EB/OL].[2015-12-28]. http: //navier.engr.colostate.edu/tools/equil.html.
    [9] Du J G, Ma H H, Qu Z W, et al. Prediction of methanés flammability using chemical equilibrium[J]. Process Safety Progress, 2015, 34(1):31-35. doi: 10.1002/prs.v34.1
    [10] Cashdollar K L, Zlochower I A, Green G M, et al. Flammability of methane, propane, and hydrogen gases[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3):327-340. http://cn.bing.com/academic/profile?id=da436dded3b969fe41d723e91798c068&encoded=0&v=paper_preview&mkt=zh-cn
    [11] Van Maaren A, Thung D S, De Goey L P H. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures[J]. Combustion Science and Technology, 1994, 96(4/5/6):327-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102209408935360
    [12] Dahoe A E, De Goey L P H. On the determination of the laminar burning velocity from closed vessel gas explosions[J]. Journal of Loss Prevention in the Process Industries, 2003, 16(6):457-478. doi: 10.1016/S0950-4230(03)00073-1
    [13] Varea E, Modica V, Vandel A, et al. Measurement of laminar burning velocity and Markstein length relative to fresh gases using a new postprocessing procedure: Application to laminar spherical flames for methane, ethanol and isooctane/air mixtures[J]. Combustion and Flame, 2012, 159(2):577-590. doi: 10.1016/j.combustflame.2011.09.002
    [14] Chen Z. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure[J]. Combustion and Flame, 2015, 162(6):2442-2453. doi: 10.1016/j.combustflame.2015.02.012
    [15] Bulck E V D. Closed algebraic expressions for the adiabatic limit value of the explosion constant in closed volume combustion[J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1):35-42. doi: 10.1016/j.jlp.2004.10.004
    [16] Benedetto A D, Cammarota F, Sarli V D, et al. Anomalous behavior during explosions of CH4 in oxygen-enriched air[J]. Combustion and Flame, 2011, 158(11):2214-2219. doi: 10.1016/j.combustflame.2011.03.015
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4290
  • HTML全文浏览量:  1326
  • PDF下载量:  442
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-28
  • 修回日期:  2016-03-30
  • 刊出日期:  2017-07-25

目录

    /

    返回文章
    返回