Analysis and theoretical calculation of explosion characteristics of methane-air mixture in a spherical vessel
-
摘要: 为研究甲烷-空气混合物在密闭球形容器内的爆炸特性,首先利用化学平衡计算软件确定合适的燃烧产物与化学平衡温度,估算甲烷-空气混合物的最大爆炸压力。然后基于火焰增长模型,用MATLAB编辑循环语句程序,计算了甲烷-空气混合气体爆炸的压力时程曲线,通过与实验数据对比,验证了化学平衡软件计算方法与火焰增长模型的可行性,并分析了误差的产生原因。进而利用火焰增长模型推出的经验公式计算爆燃指数,发现在当量比附近与实验结果拟合程度较好。Abstract: To study the characteristics of the methane-air mixture exploding in a closed spherical container, we determined the appropriate combustion products and chemical equilibrium temperature using the chemical equilibrium calculation software, thereby predicting the maximum explosion pressure of the mixture. The MATLAB program based on the flame growth model was adopted to calculate the curve showing the relationship between the explosion pressure and time. The calculation processes were verified by the comparison of the obtained results with the experimental data, and the origin of the error was also identified. Further, it is found that the empirical formula of the deflagration index KG derived from the flame growth model is well fitted with the experimental date near the chemical equivalent line.
-
表 1 球形容器内甲烷-空气混合气体的爆燃指数
Table 1. Deflagration index of methane-air mixture in spherical vessel
空气燃料比 KG, exp/(MPa·m·s-1) KG/(MPa·m·s-1) ξ<1 ξ<0.95 ξ<0.90 0.828 2.136 4.44118 4.21257 3.88981 0.945 6.305 7.50427 7.00937 6.40062 1.055 7.417 8.24091 7.87229 7.17593 1.058 7.365 8.39706 7.84194 7.14657 1.184 5.910 7.66787 7.17321 6.53207 -
[1] Bradley D, Mitcheson A. Mathematical solutions for explosions in spherical vessels[J]. Combustion and Flame, 1976, 26(2):201-217. doi: 10.1016-0010-2180(76)90072-9/ [2] Dahoe A E, Zevenbergen J F, Lemkowitz S M, et al. Dust explosion in spherical vessels: The role of flame thickness in the validity of the cube-root law[J]. Journal of Loss Prevention in the Process Industries, 1996, 18(9):33-44. http://cn.bing.com/academic/profile?id=1e68f2b1c6bc3ebba8fec56275eed030&encoded=0&v=paper_preview&mkt=zh-cn [3] Mashuga C V, Crowl D A. Flammability zone prediction using calculated adiabatic flame temperatures[J]. Process Safety Progress, 1999, 18(3):127-134. doi: 10.1002/(ISSN)1547-5913 [4] Bulck E V D. Closed algebraic expressions for the adiabatic limit value of the explosion constant in closed volume combustion[J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1):35-42. doi: 10.1016/j.jlp.2004.10.004 [5] Jo Y D, Crowl D A. Flame growth model for confined gas explosion[J]. Process Safety Progress, 2009, 28(2):141-146. doi: 10.1002/prs.v28:2 [6] Jo Y D, Crowl D A. Explosion characteristics of hydrogen-air mixtures in a spherical vessel[J]. Process Safety Progress, 2010, 29(3):216-223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c97034bf2a15a249e466d1413a6d3eaf [7] Tao G, Crowl D A. Comparison of the maximum gas combustion pressure of hydrogen/oxygen/nitrogen between chemical equilibrium calculations and experimental data[J]. Procedia Engineering, 2013, 62:786-790. doi: 10.1016/j.proeng.2013.08.126 [8] Dandy D S. Bioanalytical microfluidics program[EB/OL].[2015-12-28]. http: //navier.engr.colostate.edu/tools/equil.html. [9] Du J G, Ma H H, Qu Z W, et al. Prediction of methanés flammability using chemical equilibrium[J]. Process Safety Progress, 2015, 34(1):31-35. doi: 10.1002/prs.v34.1 [10] Cashdollar K L, Zlochower I A, Green G M, et al. Flammability of methane, propane, and hydrogen gases[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3):327-340. http://cn.bing.com/academic/profile?id=da436dded3b969fe41d723e91798c068&encoded=0&v=paper_preview&mkt=zh-cn [11] Van Maaren A, Thung D S, De Goey L P H. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures[J]. Combustion Science and Technology, 1994, 96(4/5/6):327-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102209408935360 [12] Dahoe A E, De Goey L P H. On the determination of the laminar burning velocity from closed vessel gas explosions[J]. Journal of Loss Prevention in the Process Industries, 2003, 16(6):457-478. doi: 10.1016/S0950-4230(03)00073-1 [13] Varea E, Modica V, Vandel A, et al. Measurement of laminar burning velocity and Markstein length relative to fresh gases using a new postprocessing procedure: Application to laminar spherical flames for methane, ethanol and isooctane/air mixtures[J]. Combustion and Flame, 2012, 159(2):577-590. doi: 10.1016/j.combustflame.2011.09.002 [14] Chen Z. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure[J]. Combustion and Flame, 2015, 162(6):2442-2453. doi: 10.1016/j.combustflame.2015.02.012 [15] Bulck E V D. Closed algebraic expressions for the adiabatic limit value of the explosion constant in closed volume combustion[J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1):35-42. doi: 10.1016/j.jlp.2004.10.004 [16] Benedetto A D, Cammarota F, Sarli V D, et al. Anomalous behavior during explosions of CH4 in oxygen-enriched air[J]. Combustion and Flame, 2011, 158(11):2214-2219. doi: 10.1016/j.combustflame.2011.03.015