Wavelet transformation based damage feature extraction ofhypervelocity impact acoustic emission signalon honeycomb core sandwich
-
摘要: 为了通过超高速撞击声发射信号识别蜂窝结构受空间碎片撞击后的损伤状态,提出一种基于小波的损伤特征提取方法。采用超高速撞击声发射技术,以铝合金蜂窝板为研究对象,通过超高速撞击实验获取实验信号。分析超高速撞击声发射信号的时频特征及板波模态等特征,采用Daubechies小波变换将信号中模态分离,根据小波系数计算各尺度小波能量分数及小波能量熵特征,分析各特征参数与损伤间的关系,并通过Kruskal-Wallis检验方法验证各特征值对损伤识别的贡献。结果表明:小波能量分数和小波能量熵具有一定的损伤模式分类能力;250 kHz以上的小波能量分数具有良好的损伤模式分类能力;非超声部分的低频信号对损伤识别存在干扰。Abstract: In this work, a hypervelocity impact acoustic emission signal feature extraction method was proposed to detect damages experienced by the honeycomb core sandwich structure impacted by space debris by using hypervelocity impact acoustic emission signals. Varieties of hypervelocity impact acoustic emission signals were obtained through experiments based on the hypervelocity impact acoustic emission on the aluminum honeycomb core sandwich, their time-frequencies and the modes of the waves on the honeycomb plate were analyzed, the modes of the signals were differentiated, and the wavelet energy fraction and entropy were calculated, both by using the Daubechies wavelet decomposition, with the relationship between these parameters and the damage delineated and the contribution of each parameter gauged by the Kruskal-Wallis test. The results show that, to a certain degree, the wavelet energy fraction and the entropy of information are able to identify the damage patterns. Specifically, the energy fraction with a frequency above 250 kHz exhibits a better identifying capability, while signals of a lower frequency out of the ultrasonic range exert disturbance on the damage identification.
-
表 1 信号频带划分
Table 1. Frequency band division of signal
尺度 小波系数 频带范围/kHz 1 D1(n) 0~62.5 2 D2(n) 62.5~125 3 D3(n) 125~250 4 D4(n) 250~500 5 D5(n) 500~1 000 表 2 Kruskal-Wallis检验结果
Table 2. Results of Kruskal-Wallis test
参数 κKW 显著性水平 D1(n) 0.115 0.735 D2(n) 3.206 0.073 D3(n) 3.304 0.069 D4(n) 24.815 0 D5(n) 35.672 0 H 3.268 0.071 -
[1] Upper stage explosion places LEO satellites at risk[J/OL]. Orbital Debris Quarterly News, 2013, 17(1): 8[2016-04-24]. https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv17i1.pdf. [2] Liou J C, Giovane F, Corsaro R, et al. LAD-C: A large area debris collector on the ISS[C]//36th COSPAR Scientific Assembly. Beijing, China, 2006: 36. [3] Prosser W H, Madaras E I. Distributed impact detector system (DIDS) health monitoring system evaluation[R]. Hampton: Langley Research Center, 2010. [4] Spencer G, Schäfer F, Tanaka M, et al. Design and initial calibration of micrometeoroid space debris detector (MDD)[C]//Proceedings of the 4th European Conference on Space Debris. Darmstadt, Germany: ESA, 2005: 18-20. [5] 刘武刚, 庞宝君, 韩增尧, 等.基于小波分析技术的高速撞击声发射源定位[J].高技术通讯, 2009, 19(2):181-187. http://d.old.wanfangdata.com.cn/Periodical/gjstx98200902013Liu Wugang, Pang Baojun, Han Zengyao, et al. Acoustic emission detection and location for hypervelocity impacts based on wavelet transform[J]. Chinese High Technology Letters, 2009, 19(2):181-187. http://d.old.wanfangdata.com.cn/Periodical/gjstx98200902013 [6] Liu Z D, Pang B J. A method based on acoustic emission for locating debris cloud impact[C]//4th International Conference on Experimental Mechanics. 2009: 7522. [7] 张凯, 庞宝君, 林敏.碎片云撞击声发射信号能量特征小波包分析[J].振动与冲击, 2012, 31(12):125-128. http://d.old.wanfangdata.com.cn/Periodical/zdycj201212025Zhang Kai, Pang Baojun, Lin Min. Wavelet packet analysis for acoustic emission signals caused by debris cloud impact[J]. Journal of Vibration and Shock, 2012, 31(12):125-128. http://d.old.wanfangdata.com.cn/Periodical/zdycj201212025 [8] 熊秋鹏.基于神经网络技术的空间碎片损伤模式识别研究[D].哈尔滨: 哈尔滨工业大学, 2012. [9] Taylar E M, Glanville J P, Clegg R A, et al. Hypervelocity impact on spacecraft honeycomb: Hydrocode simulation and damage laws[J]. International Journal of Impact Engineering, 2003, 29(1):691-702. [10] Nia A A, Razavi S B, Majzoobi H H. Ballistic limit determination of aluminum honeycombs: Experimental study[J]. Materials Science and Engineering A, 2008, 488(1):273-280. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027439541/ [11] Liu Y, Pang B J, Jia B, et al. Modal acoustic emission based location method in honeycomb core sandwich structure[C]//Sixth European Conference on Space Debris. 2013: 183. [12] Chakraborty N, Rathod V T, Mahapatra D R, et al. Guided wave based detection of damage in honeycomb core sandwich structures[J]. NDT & E International, 2012, 47(7):27-33. [13] 唐颀.高速撞击板波特性与声发射空间碎片在轨感知技术[D].哈尔滨: 哈尔滨工业大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10213-2009223857.htm [14] 刘武刚.基于声发射的空间碎片在轨撞击感知技术研究[D].哈尔滨: 哈尔滨工业大学, 2008. [15] Rosso O A, Blanco S, Yordanova J, et al. Wavelet entropy: A new tool for analysis of short duration brain electrical signals[J]. Journal of Neurosci Methods, 2001, 105(1):65-75. doi: 10.1016/S0165-0270(00)00356-3 [16] 向明江.屏舱声发射信号耦合对在轨感知系统定位的影响研究[D].哈尔滨: 哈尔滨工业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10213-1012002331.htm