基于小波的蜂窝板面超高速撞击声发射信号损伤特征提取

刘源 庞宝君 迟润强 曹武雄 张志远

刘源, 庞宝君, 迟润强, 曹武雄, 张志远. 基于小波的蜂窝板面超高速撞击声发射信号损伤特征提取[J]. 爆炸与冲击, 2017, 37(5): 785-792. doi: 10.11883/1001-1455(2017)05-0785-08
引用本文: 刘源, 庞宝君, 迟润强, 曹武雄, 张志远. 基于小波的蜂窝板面超高速撞击声发射信号损伤特征提取[J]. 爆炸与冲击, 2017, 37(5): 785-792. doi: 10.11883/1001-1455(2017)05-0785-08
Liu Yuan, Pang Baojun, Chi Runqiang, Cao Wuxiong, Zhang Zhiyuan. Wavelet transformation based damage feature extraction ofhypervelocity impact acoustic emission signalon honeycomb core sandwich[J]. Explosion And Shock Waves, 2017, 37(5): 785-792. doi: 10.11883/1001-1455(2017)05-0785-08
Citation: Liu Yuan, Pang Baojun, Chi Runqiang, Cao Wuxiong, Zhang Zhiyuan. Wavelet transformation based damage feature extraction ofhypervelocity impact acoustic emission signalon honeycomb core sandwich[J]. Explosion And Shock Waves, 2017, 37(5): 785-792. doi: 10.11883/1001-1455(2017)05-0785-08

基于小波的蜂窝板面超高速撞击声发射信号损伤特征提取

doi: 10.11883/1001-1455(2017)05-0785-08
基金项目: 

空间碎片专项十二五项目; 中央高校基本科研业务费专项项目 HIT.NSRIF.2015029

详细信息
    作者简介:

    刘源(1987—),男,博士研究生

    通讯作者:

    迟润强, chirq@hit.edu.cn

  • 中图分类号: O384

Wavelet transformation based damage feature extraction ofhypervelocity impact acoustic emission signalon honeycomb core sandwich

  • 摘要: 为了通过超高速撞击声发射信号识别蜂窝结构受空间碎片撞击后的损伤状态,提出一种基于小波的损伤特征提取方法。采用超高速撞击声发射技术,以铝合金蜂窝板为研究对象,通过超高速撞击实验获取实验信号。分析超高速撞击声发射信号的时频特征及板波模态等特征,采用Daubechies小波变换将信号中模态分离,根据小波系数计算各尺度小波能量分数及小波能量熵特征,分析各特征参数与损伤间的关系,并通过Kruskal-Wallis检验方法验证各特征值对损伤识别的贡献。结果表明:小波能量分数和小波能量熵具有一定的损伤模式分类能力;250 kHz以上的小波能量分数具有良好的损伤模式分类能力;非超声部分的低频信号对损伤识别存在干扰。
  • 图  1  时间窗选取示意图

    Figure  1.  Schematic diagram oftime window selection

    图  2  传感器装置示意图

    Figure  2.  Sketch of sensor positions on target plate

    图  3  蜂窝板弹道极限曲线

    Figure  3.  Ballistic limit curve ofhoneycomb core sandwich

    图  4  蜂窝板后蒙皮面板超高速撞击损伤情况

    Figure  4.  Hypervelocity impact damage of back panelsof honeycomb core sandwich

    图  5  蜂窝板的超高速撞击声发射信号波形

    Figure  5.  Oscillograph of hypervelocity impact acoustic emission signalin honeycomb core sandwich

    图  6  高通滤波信号

    Figure  6.  Signal by high-pass filtering

    图  7  信号模态

    Figure  7.  Modal acoustic emission of signal

    图  8  各频带能量分数与弹丸速度关系

    Figure  8.  Relationship between energy fraction of every frequency band and projectile velocity

    图  9  小波能量熵与弹丸速度关系

    Figure  9.  Relationship between wavelet energy entropyand projectile velocity

    表  1  信号频带划分

    Table  1.   Frequency band division of signal

    尺度 小波系数 频带范围/kHz
    1 D1(n) 0~62.5
    2 D2(n) 62.5~125
    3 D3(n) 125~250
    4 D4(n) 250~500
    5 D5(n) 500~1 000
    下载: 导出CSV

    表  2  Kruskal-Wallis检验结果

    Table  2.   Results of Kruskal-Wallis test

    参数 κKW 显著性水平
    D1(n) 0.115 0.735
    D2(n) 3.206 0.073
    D3(n) 3.304 0.069
    D4(n) 24.815 0
    D5(n) 35.672 0
    H 3.268 0.071
    下载: 导出CSV
  • [1] Upper stage explosion places LEO satellites at risk[J/OL]. Orbital Debris Quarterly News, 2013, 17(1): 8[2016-04-24]. https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv17i1.pdf.
    [2] Liou J C, Giovane F, Corsaro R, et al. LAD-C: A large area debris collector on the ISS[C]//36th COSPAR Scientific Assembly. Beijing, China, 2006: 36.
    [3] Prosser W H, Madaras E I. Distributed impact detector system (DIDS) health monitoring system evaluation[R]. Hampton: Langley Research Center, 2010.
    [4] Spencer G, Schäfer F, Tanaka M, et al. Design and initial calibration of micrometeoroid space debris detector (MDD)[C]//Proceedings of the 4th European Conference on Space Debris. Darmstadt, Germany: ESA, 2005: 18-20.
    [5] 刘武刚, 庞宝君, 韩增尧, 等.基于小波分析技术的高速撞击声发射源定位[J].高技术通讯, 2009, 19(2):181-187. http://d.old.wanfangdata.com.cn/Periodical/gjstx98200902013

    Liu Wugang, Pang Baojun, Han Zengyao, et al. Acoustic emission detection and location for hypervelocity impacts based on wavelet transform[J]. Chinese High Technology Letters, 2009, 19(2):181-187. http://d.old.wanfangdata.com.cn/Periodical/gjstx98200902013
    [6] Liu Z D, Pang B J. A method based on acoustic emission for locating debris cloud impact[C]//4th International Conference on Experimental Mechanics. 2009: 7522.
    [7] 张凯, 庞宝君, 林敏.碎片云撞击声发射信号能量特征小波包分析[J].振动与冲击, 2012, 31(12):125-128. http://d.old.wanfangdata.com.cn/Periodical/zdycj201212025

    Zhang Kai, Pang Baojun, Lin Min. Wavelet packet analysis for acoustic emission signals caused by debris cloud impact[J]. Journal of Vibration and Shock, 2012, 31(12):125-128. http://d.old.wanfangdata.com.cn/Periodical/zdycj201212025
    [8] 熊秋鹏.基于神经网络技术的空间碎片损伤模式识别研究[D].哈尔滨: 哈尔滨工业大学, 2012.
    [9] Taylar E M, Glanville J P, Clegg R A, et al. Hypervelocity impact on spacecraft honeycomb: Hydrocode simulation and damage laws[J]. International Journal of Impact Engineering, 2003, 29(1):691-702.
    [10] Nia A A, Razavi S B, Majzoobi H H. Ballistic limit determination of aluminum honeycombs: Experimental study[J]. Materials Science and Engineering A, 2008, 488(1):273-280. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027439541/
    [11] Liu Y, Pang B J, Jia B, et al. Modal acoustic emission based location method in honeycomb core sandwich structure[C]//Sixth European Conference on Space Debris. 2013: 183.
    [12] Chakraborty N, Rathod V T, Mahapatra D R, et al. Guided wave based detection of damage in honeycomb core sandwich structures[J]. NDT & E International, 2012, 47(7):27-33.
    [13] 唐颀.高速撞击板波特性与声发射空间碎片在轨感知技术[D].哈尔滨: 哈尔滨工业大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10213-2009223857.htm
    [14] 刘武刚.基于声发射的空间碎片在轨撞击感知技术研究[D].哈尔滨: 哈尔滨工业大学, 2008.
    [15] Rosso O A, Blanco S, Yordanova J, et al. Wavelet entropy: A new tool for analysis of short duration brain electrical signals[J]. Journal of Neurosci Methods, 2001, 105(1):65-75. doi: 10.1016/S0165-0270(00)00356-3
    [16] 向明江.屏舱声发射信号耦合对在轨感知系统定位的影响研究[D].哈尔滨: 哈尔滨工业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10213-1012002331.htm
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  4574
  • HTML全文浏览量:  1319
  • PDF下载量:  448
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-20
  • 修回日期:  2016-04-24
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回