Numerical analysis and redesign of magnetically driven aluminum flyer plateon PTS accelerator
-
摘要: 聚龙一号上PTS-151发次实验中,磁驱动加速370 μm厚飞片测得的最大速度为18 km/s,磁驱动加速482 μm厚飞片测得的最大速度为19 km/s。采用MDSC2程序, 对PTS-151发次实验进行了数值分析,结果表明:PTS-151发次实验中测量的最大速度的含义不同于以往文献中飞片的最大速度。以往文献中发射飞片在测试过程中自由面未被烧蚀,测试的最大速度为飞片自由面速度;PTS-151发次实验中两个飞片在测量过程中自由面被烧蚀,实验测量的最大速度为飞片被完全烧蚀前的一瞬间飞片内部最后一个固体面的速度。在飞片自由面未被烧蚀之前,370 μm厚飞片的计算最大自由面速度仅为7 km/s,482 μm厚飞片的计算最大自由面速度仅为11.8 km/s,远低于测量值。对PTS-151发次实验条件下飞片尺寸进行了再设计,飞片厚度为680 μm时最优,既能保证自由面未烧蚀,又使得飞片的速度最大,达到17.5 km/s。
-
关键词:
- 龙一号装置 /
- 磁驱动飞片 /
- 二维磁驱动数值模拟程序 /
- 固体反射面 /
- 自由面速度
Abstract: In the shot PTS-151 experiments the maximum velocity measured on the magnetically driven aluminum flyer plate with a thickness of 370 μm was 18 km/s, while that with a thickness 482 μm was 19 km/s. In this work, the data from the shot PTS-151 experiments on PTS were simulated and analyzed using the two dimensional magneto-hydro dynamics code MDSC2. The numerical simulation shows that the meaning of the maximum velocity measured in the shot PTS-151 should be different from that of the maximum velocity as reported in the related literatures where, as the free surface of the flyer plate was not ablated during the experiment, the maximum velocity measured was the flyer plate's free surface velocity. In the shot PTS-151 experiments the free surface was ablated in the measurement of the two flyer plates, and therefore the maximum velocity measured by VISAR was the velocity of the last solid surface inside them just before they were totally ablated. In our simulation, if the initial free surface is not ablated, the maximum initial free surface velocity calculated is 7 km/s with the 370 μm thick flyer plate and 11.8 km/s with the 482 μm thick flyer plate, far below the velocity actually measured in the shot PTS-151 experiments. A new flyer plate was re-designed on the basis of the current condition of the shot PTS-151, with 680 μm as the optimal thickness, which would both prevent the free surface from ablation and achieve the maximum velocity of 17.5 km/s. -
表 1 不同厚度未烧蚀固体自由面的最大速度
Table 1. Maximum velocities of solid free-surface offlyer plates with different thickness
h/μm k tf/ns vf/(km·s-1) 370 0.570 340 7 482 0.595 389 11.8 530 0.606 412 13.8 570 0.615 430 15.4 630 0.628 460 16.9 680 0.640 480 17.5 770 0.659 - 16.3 870 0.682 - 15.5 -
[1] Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6):480-485. doi: 10.1016/j.ijimpeng.2010.10.019 [2] Lemke R W, Knudson M D, Robinson A C, et al. Self-consistent, two-dimensional, magneto-hydrodynamic simulations of magnetically driven flyer plates[J]. Physics of Plasmas, 2003, 10(5):1867-1874. doi: 10.1063/1.1557530 [3] Matzen M K, Sweeney M A, Adams R G, et al. Pulsed-power-driven high energy density physics and inertial confinement fusion research[J]. Physics of Plasmas, 2005, 12:055503. doi: 10.1063/1.1891746 [4] Lemke R W, Knudson M D, Hall C A, et al. Characterization of magnetically accelerated flyer plates[J]. Physics of Plasmas, 2003, 10(4):1092-1099. doi: 10.1063/1.1554740 [5] Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. Journal of Applied Physics, 2005, 98:073530. doi: 10.1063/1.2084316 [6] Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Physical Review Letters, 2001, 87:225501. doi: 10.1103/PhysRevLett.87.225501 [7] Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. Journal of Applied Physics, 2003, 94(7):4420-4431. doi: 10.1063/1.1604967 [8] Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa[J]. Physical Review Letters, 2003, 90:035505. doi: 10.1103/PhysRevLett.90.035505 [9] Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical re-shock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Physical Review B, 2004, 69:144209. doi: 10.1103/PhysRevB.69.144209 [10] Davis J P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum[J]. Journal of Applied Physics, 2014, 116:204903. doi: 10.1063/1.4902863 [11] 阚明先, 王刚华, 赵海龙, 等.磁驱动飞片二维磁流体力学数值模拟[J].强激光与离子束, 2013, 25(8):2137-2141. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201308052Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Two dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J]. High Power Laser and Particle Beams, 2013, 25(8):2137-2141. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201308052 [12] 阚明先, 王刚华, 张红平, 等.磁驱动高速飞片模拟中滑移界面处理[J].强激光与离子束, 2015, 27:015002. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201501036Kan Mingxian, Wang Ganghua, Zhang Hongping, et al. Sliding interface processing in simulation on magnetically driving high speed flyer[J]. High Power Laser and Particle Beams, 2015, 27:015002. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201501036 [13] 阚明先, 张朝辉, 段书超, 等."聚龙一号"装置上磁驱动铝飞片实验的数值模拟[J].强激光与离子束, 2015, 27(12):014001. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201512044Kan Mingxian, Zhang Zhaohui, Duan Shuchao, et al. Numerical simulation of magnetically driven aluminum flyer plate on PTS accelerator[J]. High Power Laser and Particle Beams, 2015, 27(12):014001. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201512044 [14] 夏明鹤, 计策, 王玉娟, 等.PTS装置工作模式及波形调节[J].强激光与粒子束, 2012, 24(11):2768-2772. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201211052Xia Minghe, Ji Ce, Wang Yujuan, et al. Operation models and waveform shaping of primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(11):2768-2772. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201211052 [15] 阚明先, 王刚华, 赵海龙, 等.金属电阻率模型[J].爆炸与冲击, 2013, 33(3):282-286. doi: 10.11883/1001-1455(2013)03-0282-05Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Electrical resistivity model for metals[J]. Explosion and Shock Waves, 2013, 33(3):282-286. doi: 10.11883/1001-1455(2013)03-0282-05