• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

基于力热耦合材料模型的Steven试验数值模拟方法

楼建锋 张延耿 周婷婷 洪滔

程康, 章昌顺. 相似理论在深孔梯段爆破飞石距离计算中的应用[J]. 爆炸与冲击, 2000, 20(2): 182-185. doi: 10.11883/1001-1455(2000)02-0182-4
引用本文: 楼建锋, 张延耿, 周婷婷, 洪滔. 基于力热耦合材料模型的Steven试验数值模拟方法[J]. 爆炸与冲击, 2017, 37(5): 807-812. doi: 10.11883/1001-1455(2017)05-0807-06
Lou Jianfeng, Zhang Yangeng, Zhou Tingting, Hong Tao. Numerical method for simulating Steven test basedon thermo-mechanical coupled material model[J]. Explosion And Shock Waves, 2017, 37(5): 807-812. doi: 10.11883/1001-1455(2017)05-0807-06
Citation: Lou Jianfeng, Zhang Yangeng, Zhou Tingting, Hong Tao. Numerical method for simulating Steven test basedon thermo-mechanical coupled material model[J]. Explosion And Shock Waves, 2017, 37(5): 807-812. doi: 10.11883/1001-1455(2017)05-0807-06

基于力热耦合材料模型的Steven试验数值模拟方法

doi: 10.11883/1001-1455(2017)05-0807-06
基金项目: 

国家自然科学基金项目 11302031

国家自然科学基金项目 11402031

中国工程物理研究院科学技术发展基金项目 2014B0101014

中国工程物理研究院安全弹药研发中心开放基金项目 RMC2014B02

详细信息
    作者简介:

    楼建锋(1980—),男,博士,副研究员

    通讯作者:

    张延耿,zhang_yangeng@iapcm.ac.cn

  • 中图分类号: O381

Numerical method for simulating Steven test basedon thermo-mechanical coupled material model

  • 摘要: 在力热耦合材料模型中,增加炸药自热放能模型,建立了Steven试验的力-热-化耦合的数值模拟方法。数值计算模型中,应力应变关系采用双线性硬化弹塑性模型,炸药受力后的热作用采用各向同性热材料模型,炸药的化学反应采用Arrhenius反应率函数,同时还考虑了升温和熔化对材料力学、热学性能的影响。针对标准Steven试验,通过数值分析得到了靶板的变形情况和炸药点火的速度阈值,将计算结果与实验数据进行了比较,两者符合较好。表明该方法可以较好地模拟Steven试验,而且与以往的分析模型和方法相比,本文的方法不需要增加经验性的点火准则和判据,具有更广泛的适用性,可以为研究低速撞击条件下炸药的力热响应和局域化点火问题提供参考。
  • 图  1  Steven试验装置结构示意图

    Figure  1.  Configuration for Steven test

    图  2  计算模型的初始图像

    Figure  2.  Initial configuration of simulation model

    图  3  被弹丸撞击后靶板的计算图像

    Figure  3.  Deformed state of target impacted by projectile

    图  4  样品盒背板中心应变的对比

    Figure  4.  Comparison of strain at center of holder's back plate

    图  5  典型时刻温度云图对比

    Figure  5.  Comparison of temperature profile at typical time

    图  6  典型时刻压力云图对比

    Figure  6.  Comparison of pressure profile at typical time

    图  7  不同撞击速度下点火位置的温升

    Figure  7.  Temperature variation of ignition point at different impact velocities

    表  1  炸药点火反应的速度阈值与实验数据比较

    Table  1.   Predicted threshold of impact velosity inducing explosive ignisioncompared experimental data

    文献 v/(m·s-1)
    实验[4] 计算[4] 本文计算
    [3] 54~56 44~45 45~48
    [2] 43~53 45~50 45~49
    下载: 导出CSV
  • [1] Chidester S K, Green L G, Lee C G. A frictional work predictive method for the initiation of solid high explosives from low-pressure impacts[C]//Proceeding of 10th International Detonation Symposium. 1993: 785-792.
    [2] Chidester S K, Tarver C M, Garza R. Low amplitude impact testing and analysis of pristine and aged solid high explosives[C]//Proceeding of 11th International Detonation Symposium. 1998: 93-100.
    [3] Idar D J, Lucht R A, Straight J W, et al. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments[C]//Proceeding of 11th International Detonation Symposium. 1998: 102-110.
    [4] Scammon R J, Browning R V, Middleditch J, et al. Low amplitude insult project: Structural analysis and prediction of low order reaction[C]//Proceeding of 11th International Detonation Symposium. 1998: 111-118.
    [5] Vandersall K S, Chidester S K, Forbes J W, et al. Experimental and modeling studies of crush, puncture, and perforation scenarios in the steven impact test[C]//Proceeding of 12th International Detonation Symposium. 2002: 131-139.
    [6] Wortley S, Jones A, Cartwright M, et al. Low speed impact of pristine and aged solid high explosive[C]//Proceeding of 12th International Detonation Symposium. 2002: 399-408.
    [7] Switzer L L, Vandersall K S, Chidester S K, et al. Threshold studies of heated HMX-based energetic material targets using the Steven impact test[C]//Proceeding of Shock Compression of Condensed Matter. 2003: 1045-1048.
    [8] Lee E L, Tarver C M. Phenomenological model of shock initiation in heterogeneous explosives[J]. Physics of Fluids, 1980, 23(12):2362-2372. doi: 10.1063/1.862940
    [9] Murphy M J, Lee E L, Weston A M, et al. Modeling shock initiation in composition B[C]//Proceeding of the 10th International Detonation Symposium. 1993: 786-792.
    [10] Vandersall K S, Tarver C M, Garcia F, et al. Shock initiation experiments on PBX9501 explosive at 150℃ for ignition and growth modeling[C]//Proceeding of Shock Compression of Condensed Matter. 2005: 1127-1130.
    [11] Tarver C M, Lefrancois A S, Lee R S, et al. Shock initiation of the PETN-based explosive LX-16[C]//Proceeding of 13th International Detonation Symposium. 2006: 139.
    [12] Vandersall K S, Tarver C M, Garcia F, et al. Low amplitude single and multiple shock initiation experiments and modeling of LX-04[C]//Proceeding of 13th International Detonation Symposium. 2006: 145.
    [13] Urtiew P A, Vandersall K S, Tarver C M, et al. Shock initiation experiments and modeling of composition B and C-4[C]//Proceeding of 13th International Detonation Symposium. 2006: 147.
    [14] Tarver C M, Chidester S K. Ignition and growth modeling of detonating TATB cones and arcs[C]//Proceeding of Shock Compression of Condensed Matter. 2007: 429-432.
    [15] Chidester S K, Garcia F, Vandersall K S, et al. Shock initiation experiments plus ignition and growth modeling of damaged LX-04 charges[C]//Proceeding of Shock Compression of Condensed Matter. 2009: 271-274.
    [16] May C M, Tarver C M. Modeling short shock pulse duration initiation of LX-16 and LX-10 charges[C]//Proceeding of Shock Compression of Condensed Matter. 2009: 275-278.
    [17] Vandersall K S, Tarver C M, Garcia F, et al. On the low pressure shock initiation of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine based plastic bonded explosives[J]. Journal of Applied Physics, 2010, 107(9):094906. doi: 10.1063/1.3407570
    [18] Hallquist J O. LS-DYNA Theoretical manual[Z]. Livemore Software Technology Corporation, 1998.
    [19] Livemore Software Technology Corporation. LS-DYNA Keyword user's manual: Version 970[Z]. 2003.
  • 期刊类型引用(13)

    1. 刘恒言,梁争峰,阮喜军,程淑杰. 基于微元法的偏心起爆战斗部破片初速计算方法. 含能材料. 2024(07): 683-692 . 百度学术
    2. 姜金佐,徐翔云,任王军,于潇,么梅利. 战斗部动态爆炸破片威力场综述. 兵工学报. 2023(S1): 1-8 . 百度学术
    3. 于佳鑫,李伟兵,任冠群,王晓鸣. 基于复合装药结构的偏心起爆定向控制研究. 兵器装备工程学报. 2022(03): 107-111 . 百度学术
    4. 张广华,沈飞,刘睿,王辉. 起爆方式对非圆截面装药结构释能特性的影响. 高压物理学报. 2022(03): 129-137 . 百度学术
    5. 邓海,全嘉林,梁争峰. 偏心起爆对战斗部装药能量分配增益的影响. 爆炸与冲击. 2022(05): 3-15 . 本站查看
    6. 李鑫,王伟力,梁争峰. 不同起爆方式下战斗部破片飞散特性. 弹箭与制导学报. 2022(04): 35-42 . 百度学术
    7. 孙兴昀,李亮亮,陈元建,郑雄伟,李鑫,阮喜军,苗润源,刘韩辉,王娟娟. 大质量超高速金属破片实验技术研究进展. 兵器装备工程学报. 2021(01): 122-129 . 百度学术
    8. 张晓辰,齐泽昊,邹盛,张林,梁仕发,黄旭. 综合管廊工程口部防护设备常规武器静爆毁伤试验研究. 防护工程. 2021(03): 19-25 . 百度学术
    9. 李翔宇,李振铎,梁民族. D型战斗部破片飞散性及威力场快速计算. 爆炸与冲击. 2019(04): 137-144 . 本站查看
    10. 贾雷明,王澍霏,田宙. 爆炸冲击波反射流场的理论计算方法. 爆炸与冲击. 2019(06): 94-102 . 本站查看
    11. 李瑞,李伟兵,王晓鸣,李文彬. 三点起爆控制参数对尾翼爆炸成型弹丸成型的影响. 爆炸与冲击. 2018(03): 501-508 . 本站查看
    12. 印立魁,候秀成,赵太勇,陈智刚,纪刘奇. 对破片飞散参量计算模型的分析和评价. 弹箭与制导学报. 2017(04): 55-59 . 百度学术
    13. 韩峰,王力,周峤. 基于物质点法的偏心起爆壳体动态破碎研究. 兵工学报. 2016(S1): 80-85 . 百度学术

    其他类型引用(4)

  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  4597
  • HTML全文浏览量:  1311
  • PDF下载量:  243
  • 被引次数: 17
出版历程
  • 收稿日期:  2016-01-29
  • 修回日期:  2016-06-12
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回