Normal restitution coefficient of sandstone spheres
-
摘要: 法向恢复系数是岩崩块石运动分析的关键参数,其取值直接决定了块石的运动轨迹。本文中采用自行设计的碰撞实验装置和声频采样技术,测定了砂岩球体碰撞的法向恢复系数,研究了粒径、碰撞速度、含水状态和板的弹性特性4个因素对恢复系数的影响。结果表明:砂岩球体法向恢复系数存在复杂的尺寸效应,恢复系数随粒径的增大先增大后减小;碰撞过程中存在的黏弹性耗能机理和弹塑性损伤耗能机理共同作用产生了复杂的尺寸效应;受砂岩非均质特性的作用,粒径较小时,恢复系数的速度效应较明显(随速度增大而增大),粒径较大时速度对恢复系数的影响消失;砂岩饱和使黏弹性耗能和弹塑性损伤耗能增加,使恢复系数比风干时低;等效弹性模量对恢复系数的影响较大,等效弹性模量越大,法向恢复系数越小。Abstract: The normal restitution coefficient (NRC) is a key parameter that determines the trajectory of the stone during a rockfall. In this study, using a test equipment and a sound-sampling technique developed by ourselves, we first measured the NRC of sandstone spheres and analyzed its influencing factors, i.e. the particle size, the impact velocity, the hydrous state and the elastic properties of the plate, and then we examined the size effect, the rate effect and the energy dissipation mechanism of the NRC. The results show that the NRC of sandstone spheres has a complex size effect which, with the increase of the size of sandstone spheres, at first increases and then decreases. The analysis shows that there exists two energy dissipation mechanisms, i.e. the viscoelastic dissipation and the elastoplastic damage dissipation, interacting with each other, which result in the complex size effect; that, due to the heterogeneity of sandstones, the velocity effect of the NRC is obvious when the diameter of the sandstone particle is small, while this effect is unobservable when the diameter is over 5 cm; that, compared with the NRC of air-drying sandstones, the saturation can cause the viscoelastic dissipation and elastoplastic damage dissipation to increase; and that the equivalent elastic modulus has a great impact on the NRC, i.e. the greater the equivalent elastic modulus, the smaller the NRC.
-
Key words:
- sandstone spheres /
- normal restitution coefficient /
- size effect /
- velocity effect
-
表 1 砂岩球体几何尺寸
Table 1. Geometry of sandstone particle
砂岩球体编组 直径/cm 球度 s-2 2.092±0.063 0.999 1 s-3 2.786±0.048 1.000 0 s-4 4.017±0.055 1.000 0 s-5 4.788±0.131 0.998 0 s-6 5.832±0.062 1.000 0 -
[1] Macciotta R, Martin C D, Cruden D M. Probabilistic estimation of rockfall height and kinetic energy based on a three-dimensional trajectory model and Monte Carlo simulation[J]. Landslides, 2015, 12(4):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a9dc57c9a5d9090c5bb8e86734f01e7 [2] Lu Y E, Zhang L M. Analysis of failure of a bridge foundation under rock impact[J]. Acta Geotechnica, 2012, 7(1):57-68. http://cn.bing.com/academic/profile?id=4a0f22e4c1efd78397c7278dd374361c&encoded=0&v=paper_preview&mkt=zh-cn [3] Chai B, Tang Z, Zhang A, et al. An uncertainty method for probabilistic analysis of buildings impacted by rockfall in a limestone quarry in Fengshan, Southwestern China[J]. Rock Mechanics & Rock Engineering, 2015, 48(5):1981-1996. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d96584daf19bec589d0d7ae38492ae4 [4] Antonyuk S, Heinrich S, Tomas J, et al. Energy absorption during compression and impact of dry elastic-plastic spherical granules[J]. Granular Matter, 2010, 12(1):15-47. doi: 10.1007/s10035-009-0161-3 [5] 章广成, 向欣, 唐辉明.落石碰撞恢复系数的现场试验与数值计算[J].岩石力学与工程学报, 2011, 30(6):1266-1273. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201106021Zhang Guangcheng, Xiang Xin, Tang Huiming. Field test and numerical calculation of restitution coefficient of rockfall collision[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6):1266-1273. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201106021 [6] Dong H K, Gratchev I, Berends J, et al. Calibration of restitution coefficients using rockfall simulations based on 3D photogrammetry model: a case study[J]. Natural Hazards, 2015, 78(3):1-16. http://cn.bing.com/academic/profile?id=9b798d9b1f23ad6aad462d320063ac24&encoded=0&v=paper_preview&mkt=zh-cn [7] 叶四桥, 巩尚卿.落石碰撞法向恢复系数的模型试验研究[J].中国铁道科学, 2015, 36(4):13-19. doi: 10.3969/j.issn.1001-4632.2015.04.03Ye Siqiao, Gong Shangqing. Research on normal restitution coefficient of rockfall collision by model tests[J]. China Railway Science, 2015, 36(4):13-19. doi: 10.3969/j.issn.1001-4632.2015.04.03 [8] Asteriou P, Saroglou H, Tsiambaos G. Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis[J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 54(3):103-113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff819cc84eb7ffed461e1460602950e4 [9] Ritchie A M. Evaluation of rockfall and its control[J]. Highway Research Record, 1963, 17:13-28. [10] Gigli G, Morelli S, Fornera S, et al. Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios[J]. Landslides, 2014, 11(1):1-14. doi: 10.1007/s10346-012-0374-0 [11] Harp E L, Dart R L, Reichenbach P. Rock fall simulation at timpanogos cave national monument, American Fork Canyon, Utah, USA[J]. Landslides, 2011, 8(3):373-379. doi: 10.1007/s10346-010-0251-7 [12] Wang X, Frattini P, Crosta G B, et al. Uncertainty assessment in quantitative rockfall risk assessment[J]. Landslides, 2014, 11(4):711-722. doi: 10.1007/s10346-013-0447-8 [13] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):331-336. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1208.0565 [14] 何思明, 吴永, 李新坡.滚石冲击碰撞恢复系数研究[J].岩土力学, 2009, 30(3):623-627. doi: 10.3969/j.issn.1000-7598.2009.03.008He Siming, Wu Yong, Li Xinpo. Research on restitution coefficient of rock fall[J]. Rock and Soil Mechanics, 2009, 30(3):623-627. doi: 10.3969/j.issn.1000-7598.2009.03.008 [15] Landau L D, Lifschitz E M. Theoretische physik. Band Ⅶ: Elastizitä tstheorie[M]. Moskau: Fizmatlit Press, 2001. [16] Alizadeh E, Bertrand F, Chaouki J. Development of a granular normal contact force model based on a non-Newtonian liquid filled dashpot[J]. Powder Technology, 2013, 237(3):202-212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f1af19143347ad95bb6afc07870ff4a [17] Brilliantov N V, Spahn F, Hertzsch J M, et al. Model for collisions in granular gases[J]. Physical Review E, 1996, 53(5):5382-5392. doi: 10.1103/PhysRevE.53.5382 [18] Fu J, Adams M J, Reynolds G K, et al. Impact deformation and rebound of wet granules[J]. Powder Technology, 2004, 140(3):248-257. doi: 10.1016/j.powtec.2004.01.012 [19] Higa M, Arakawa M, Maeno N. Size dependence of restitution coefficients of ice in relation to collision strength[J]. Icarus, 1998, 133(2):310-320. doi: 10.1006/icar.1998.5938 [20] Johnson K L.接触力学[M].徐秉业, 罗学富, 刘信声, 等译.北京: 高等教育出版社, 1992. [21] Dmytro A, Elliott J A, Hancock B C. Effect of particle size on energy dissipation in viscoelastic granular collisions[J]. Physical Review E, 2011, 84(2):1713-1724. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e426785648408c5d5d449c2a5f36e74 [22] Wu C Y, Li L Y, Thornton C. Rebound behaviour of spheres for plastic impacts[J]. International Journal of Impact Engineering, 2003, 28(9):929-946. doi: 10.1016/S0734-743X(03)00014-9 [23] Thornton C. Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres[J]. Journal of Applied Mechanics, 1997, 64(2):383-386. doi: 10.1115/1.2787319 [24] Fu J S, Cheong Y S, Reynolds G K, et al. An experimental study of the variability in the properties and quality of wet granules[J]. Powder Technology, 2004, 140(3):209-216. doi: 10.1016/j.powtec.2004.01.019