• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

激波与椭圆形重气柱相互作用的PLIF实验

黄熙龙 廖深飞 邹立勇 刘金宏 曹仁义

黄熙龙, 廖深飞, 邹立勇, 刘金宏, 曹仁义. 激波与椭圆形重气柱相互作用的PLIF实验[J]. 爆炸与冲击, 2017, 37(5): 829-836. doi: 10.11883/1001-1455(2017)05-0829-08
引用本文: 黄熙龙, 廖深飞, 邹立勇, 刘金宏, 曹仁义. 激波与椭圆形重气柱相互作用的PLIF实验[J]. 爆炸与冲击, 2017, 37(5): 829-836. doi: 10.11883/1001-1455(2017)05-0829-08
LiYi-min, GaoZheng-guo, ZhuQing-qing, HuangXiao-bo, HuangXi. An experimental investigation into effects of blast-induced vibration on strength of early-age concrete[J]. Explosion And Shock Waves, 2013, 33(3): 243-248. doi: 10.11883/1001-1455(2013)03-0243-06
Citation: Huang Xilong, Liao Shenfei, Zou Liyong, Liu Jinhong, Cao Renyi. Experiment on interaction of shock and elliptic heavy-gas cylinder by using PLIF[J]. Explosion And Shock Waves, 2017, 37(5): 829-836. doi: 10.11883/1001-1455(2017)05-0829-08

激波与椭圆形重气柱相互作用的PLIF实验

doi: 10.11883/1001-1455(2017)05-0829-08
基金项目: 

国家自然科学基金项目 11172278

国家自然科学基金项目 11302201

国家自然科学基金项目 11472253

详细信息
    作者简介:

    黄熙龙(1988—),男,硕士,助理研究员,xlhuang@caep.cn

  • 中图分类号: O357

Experiment on interaction of shock and elliptic heavy-gas cylinder by using PLIF

  • 摘要: 在水平激波管中,采用平面激光诱发荧光(planar laser-induced fluorescence, PLIF)方法对椭圆形重气柱界面的Richtmyer-Meshkov不稳定性进行实验。气柱由SF6混入一定比例的丙酮蒸气构成,环境气体为空气。通过改变椭圆形气柱的长短轴比值,得到了激波马赫数为1.25时,3种初始界面的演化形态。通过相对体积分数标定,得到了界面失稳演化过程中的相对体积分数分布,观察到了激波作用后界面气体聚集、转移、消散等现象。实验结果发现,对于流向轴长与展向轴长之比较大的气柱界面,初始界面产生的涡量更大且分布更广,其界面不稳定性发展得越迅速和剧烈。失稳发展迅速的界面甚至出现涡对碰撞并产生尾部射流结构的现象。初始界面直接决定了失稳发展初期形成的涡对强度和间距,并对后期演化有重要影响。
  • 图  1  SF6气体与丙酮蒸气的混合

    Figure  1.  Mixing of SF6 and acetone vapor

    图  2  椭圆形气柱界面

    Figure  2.  Interface of elliptic gas cylinder

    图  3  气柱界面内部气体分布

    Figure  3.  Distribution of relative volume fraction in the gas cylinder interface

    图  4  气柱界面斜压涡分布

    Figure  4.  Distribution of baroclinic vortex

    图  5  压力梯度、密度梯度夹角正弦值沿界面半周长的变化

    Figure  5.  The change of the sine angle of pressure gradient and density gradient along the half perimeter of the interface

    图  6  不同形状界面气体相对体积分数分布

    Figure  6.  Distribution of relative volume fraction of gas at different gas cylinder interfaces

    图  7  圆形界面沿轴线的气体相对体积分数分布

    Figure  7.  Relative volume fraction of gas along axises of circular interface

    图  8  界面相对体积分数的概率密度分布

    Figure  8.  Probability density of interfacial relative volume fraction

    图  9  峰值气体相对体积分数与时间关系

    Figure  9.  Relation between of relative volume fraction peak and time

    图  10  3种不同界面相对面积随时间演化

    Figure  10.  Time evolution of profile area for different initial conditions

  • [1] Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4(5):101-104. http://d.old.wanfangdata.com.cn/Periodical/wlxb201723027
    [2] Haas J, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. Journal of Fluid Mechanics, 1987, 181:41-76. doi: 10.1017/S0022112087002003
    [3] Jacobs J W. Shock-induced mixing of a light-gas cylinder[J]. Journal of Fluid Mechanics, 1992, 234:629-649. doi: 10.1017/S0022112092000946
    [4] Jacobs J W. The dynamics of shock accelerated light and heavy gas cylinders[J]. Physics of Fluids A, 1993, 5(9):2239-2247. doi: 10.1063/1.858562
    [5] Tomkins C, Prestridge K, Zoldi C, et al. An investigation of shock-accelerated, unstable gas cylinders using simultaneous density-field visualization and PIV [C]//The 4th International Symposium on Particle Image Velocimetry. Germany, 2001: 1136.
    [6] Tomkins C, Prestridge K, Rightley P, et al. Flow morphologies of two shock-accelerated unstable gas cylinders[J]. Journal of Visualization, 2002, 5(3):273-283. doi: 10.1007/BF03182335
    [7] Kumar S, Orlicz G, Tomkins C, et al. Stretching of material lines in shock-accelerated gaseous flows[J]. Physics of Fluids, 2005, 17(8):082107. doi: 10.1063/1.2031347
    [8] Kumar S, Vorobieff P, Orlicz G, et al. Complex flow morphologies in shock-accelerated gaseous flows[J]. Physica D, 2007, 235(1):21-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdbcdf0e0282f4b502c2c68e5b86d83b
    [9] Si T, Zhai Z G, Luo X S. Experimental study of Richtmyer-Meshkov instability in a cylindrical converging shock tube[J]. Laser and Particle Beams, 2014, 32(3):343-351. doi: 10.1017/S0263034614000202
    [10] 何惠琴, 翟志刚, 司廷, 等.反射激波作用下两种重气柱界面不稳定性实验研究[J].实验流体力学, 2014, 28(6):56-60. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201406008

    He Huiqin, Zhai Zhigang, Si Ting, et al. Experimental study on the shocked RM instability of two kinds of heavy gas cylinder[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):56-60. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201406008
    [11] Zou L Y, Liu C L, Tan D W, et al. On interaction of shock wave with elliptic gas cylinder[J]. Journal of Visualization, 2010, 13(4):347-353. doi: 10.1007/s12650-010-0053-y
    [12] Zou L Y, Huang W B, Liu C L, et al. On the evolution of double shock-accelerated elliptic gas cylinders[J]. Journal of Fluids Engineering, 2014, 136(9):031204. http://cn.bing.com/academic/profile?id=d99fff72b338cb9ecd62ae8c4ec2d723&encoded=0&v=paper_preview&mkt=zh-cn
    [13] 邹立勇, 廖深飞, 刘金宏, 等.双椭圆界面Richtmyer-Meshkov流动中的相互干扰效应[J].高压物理学报, 2015, 29(3):191-198. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201503005

    Zou Liyong, Liao Shenfei, Liu Jinhong, et al. Interaction effect of two ellipse Richtmyer-Meshkov flows[J]. Chinese Journal of High Pressure Physics, 2015, 29(3):191-198. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201503005
    [14] Balakumar B, Orlicz G, Tomkins C. Dependence of growth patterns and mixing width on initial conditions in Richtmyer-Meshkov unstable fluid layers[J]. Physica Scripta, 2008, T132:014013. doi: 10.1088/0031-8949/2008/T132/014013
    [15] Tomkins C, Kumar S, Orlicz G, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. Journal of Fluid Mechanics, 2008, 611:131-150. doi: 10.1017-S0022112008002723/
    [16] Bai J S, Zou L Y, Wang T, et al. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders[J]. Physical Review E, 2010, 82:056318. doi: 10.1103/PhysRevE.82.056318
  • 期刊类型引用(20)

    1. 党发宁,王宝生,李玉涛,任劼,方建银. 冲击速度及骨料率对混凝土动强度的影响研究. 西安建筑科技大学学报(自然科学版). 2024(01): 7-13+22 . 百度学术
    2. 熊凌浩,周传波,蒋楠,王腾,蒙贤忠. 大断面隧道新浇二衬混凝土爆破振动控制安全阈值. 工程爆破. 2023(01): 1-9 . 百度学术
    3. 庄金平,任凯,杨尊煌. 早龄期持续受荷对成熟混凝土梁受弯性能影响试验研究. 混凝土. 2023(11): 49-52+57 . 百度学术
    4. 王亚强,李二宝,王骞,漆斌,汪熙,杨海涛. 爆破振动对混凝土初凝期强度影响规律及降震试验研究. 中国矿业. 2022(03): 124-130 . 百度学术
    5. 潘长春. 基于爆破振动的新浇混凝土现行安全标准探讨. 科技创新与应用. 2021(08): 75-77+81 . 百度学术
    6. 缪琪,赵章华,俞海杰,孙旭峰. 水厂新浇构筑物在基坑爆破时的抗裂性能研究. 山西建筑. 2021(20): 40-43 . 百度学术
    7. 谢立栋,东兆星,姜慧,朱炯,齐燕军. 早龄期混凝土动强度应变率系数的统计方法. 兵工学报. 2021(S1): 159-166 . 百度学术
    8. 陈秋南,贺泳超,邹根,李君杰,周相识,周光裕. 爆破施工对隧道二衬结构影响的试验研究. 铁道科学与工程学报. 2020(03): 676-681 . 百度学术
    9. 杨小林,刘宝,吴礼报. 振动荷载作用下新浇混凝土损伤累积规律试验研究. 混凝土. 2020(09): 27-30+36 . 百度学术
    10. 叶红宇,杨小林,卓越. 基于损伤累积的爆破振动主频衰减规律试验研究. 矿业研究与开发. 2019(04): 92-96 . 百度学术
    11. 杨小林,李拴杰,褚怀保,姚智慧,杨杰,刘宝. 多次振动荷载作用下新浇混凝土超声波波速变化规律试验研究. 河南理工大学学报(自然科学版). 2018(03): 124-128 . 百度学术
    12. 褚怀保,杨小林,叶红宇,梁为民,余永强,魏海霞. 隧道衬砌混凝土爆破损伤累积规律试验研究. 铁道学报. 2018(03): 132-136 . 百度学术
    13. 褚怀保,吴礼报,杨小林. 振动荷载作用对新浇混凝土强度与耐久性影响试验研究. 硅酸盐通报. 2018(09): 2919-2923 . 百度学术
    14. 褚怀保,杨小林,叶红宇,吴礼报. 新浇混凝土爆破振动损伤累积规律模拟试验研究. 煤炭学报. 2018(09): 2469-2475 . 百度学术
    15. 张宏兵. 面向爆破应力波小净距隧道混凝土安全振动标准研究. 湖南交通科技. 2017(03): 180-184 . 百度学术
    16. 潘慧敏,赵庆新,付军. 早龄期混凝土受扰性能研究进展. 硅酸盐通报. 2017(01): 64-70 . 百度学术
    17. 褚怀保,吴礼报,杨小林,叶红宇,李栓杰,赵禹. 新浇混凝土爆破振动损伤累积机制试验研究. 中国安全科学学报. 2017(09): 69-73 . 百度学术
    18. 吴帅峰,王戈,袁东凯,刘殿书. 爆破振动对新浇混凝土影响的试验研究. 振动与冲击. 2017(02): 39-44+88 . 百度学术
    19. 戴思南,吴新霞,李广平. 结构尺寸与龄期对混凝土爆破振动响应的影响. 爆破. 2015(01): 131-134+150 . 百度学术
    20. 罗福友,邱子华,周浩仓,潘昌义,罗福龙,杨康. 沟槽爆破参数优化及成本分析. 江西理工大学学报. 2015(03): 58-63 . 百度学术

    其他类型引用(12)

  • 加载中
图(10)
计量
  • 文章访问数:  4269
  • HTML全文浏览量:  1236
  • PDF下载量:  232
  • 被引次数: 32
出版历程
  • 收稿日期:  2016-06-29
  • 修回日期:  2016-10-08
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回