激波诱导高速气流中液滴的初期变形

易翔宇 朱雨建 杨基明

易翔宇, 朱雨建, 杨基明. 激波诱导高速气流中液滴的初期变形[J]. 爆炸与冲击, 2017, 37(5): 853-862. doi: 10.11883/1001-1455(2017)05-0853-10
引用本文: 易翔宇, 朱雨建, 杨基明. 激波诱导高速气流中液滴的初期变形[J]. 爆炸与冲击, 2017, 37(5): 853-862. doi: 10.11883/1001-1455(2017)05-0853-10
Yi Xiangyu, Zhu Yujian, Yang Jiming. Early-stage deformation of liquid drop in shock induced high-speed flow[J]. Explosion And Shock Waves, 2017, 37(5): 853-862. doi: 10.11883/1001-1455(2017)05-0853-10
Citation: Yi Xiangyu, Zhu Yujian, Yang Jiming. Early-stage deformation of liquid drop in shock induced high-speed flow[J]. Explosion And Shock Waves, 2017, 37(5): 853-862. doi: 10.11883/1001-1455(2017)05-0853-10

激波诱导高速气流中液滴的初期变形

doi: 10.11883/1001-1455(2017)05-0853-10
基金项目: 

国家自然科学基金项目 11102204

国家自然科学基金项目 11572313

详细信息
    作者简介:

    易翔宇(1988-),男,博士研究生

    通讯作者:

    朱雨建,yujianrd@ustc.edu.cn

  • 中图分类号: O351

Early-stage deformation of liquid drop in shock induced high-speed flow

  • 摘要: 基于激波管平台和高速摄影方法对平面激波诱导高速气流中液滴的早期变形现象进行实验研究。研究发现在相近的We数或Re数下,实验参数的改变可导致液滴形态发展出现显著差异。这种差异主要体现在背风面的脊状环形突起、褶皱区以及后驻点区的凹凸形态。对刚性圆球外流的数值模拟显示,液滴变形早期形态与外流场结构和表面气动力分布之间存在鲜明的对应关系。最后采用简化理论推导出一组估测液滴早期变形的表达式。将数值模拟所得气动力数据代入计算发现:导致液滴变形的主要驱动力是液滴表面不均匀压力的挤压效应,而不是界面剪切摩擦所引起的切向流动堆积效应,前者高出后者约2个数量级;此外,采用压力作用理论计算所得液滴外形在主要变形特征和变形量级上均可与实验图像很好地吻合。
  • 图  1  实验原理与装置示意图

    Figure  1.  Schematic of experimental principle and apparatus

    图  2  计算域和网格示意图

    Figure  2.  Schematic of simulation zone and grids

    图  3  工况A激波作用后液滴变形和破碎图像

    Figure  3.  Images of drop deformation and breakup subsequent to the interaction of a shock wave for Case A

    图  4  工况B激波作用后液滴变形和破碎图像

    Figure  4.  Images of drop deformation and breakup subsequent to the interaction of a shock wave for Case B

    图  5  工况C激波作用后液滴变形和破碎图像

    Figure  5.  Images of drop deformation and breakup subsequent to the interaction of a shock wave for Case C

    图  6  圆球外流场马赫数云图

    Figure  6.  Contours of flow Mach number around a sphere

    图  7  工况B对应球面压力与剪切力分布

    Figure  7.  Pressure and friction distribution on surface of a sphere under condition of Case B

    图  8  剪切力诱导表面液体堆积示意图

    Figure  8.  Schematic of friction induced surficial liquid accumulation

    图  9  剪切力诱导液滴径向加速度

    Figure  9.  Radial acceleration induced by surface friction

    图  10  压力不均匀分布诱导液滴径向加速度

    Figure  10.  Radial acceleration induced by uneven pressure distribution

    图  11  液滴初期变形理论计算结果与实验的比较

    Figure  11.  Comparison of early-stage drop deformation between theoretical calculation and experiment

    表  1  实验参数

    Table  1.   Experiment parameters

    工况 d/mm p0 /kPa Ma ug /(m·s-1) ρg /(kg·m-3) We Re/104 Oh/10-3 tf /μs tb /μs tshock/μs
    A 2.66 15.8 1.89 396.3 0.460 2670 1.9 2.3 6.7 312.9 4.04
    B 3.76 69.1 1.37 186.2 1.312 2370 4.24 1.9 20.2 557.7 7.89
    C 3.94 35.7 1.62 291.8 0.856 3990 4.1 1.9 13.5 461.4 6.99
    下载: 导出CSV
  • [1] 费立森.煤油在冷态超声速气流中喷射和雾化现象的初步研究[D].合肥: 中国科学技术大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10358-2008091933.htm
    [2] 万云霞, 黄勇, 朱英.液体圆柱射流破碎过程的实验[J].航空动力学报, 2008, 23(2):208-214. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200802002

    Wan Yunxia, Huang Yong, Zhu Ying. Experiment on the breakup process of free round liquid jet[J]. Journal of Aerospace Power, 2008, 23(2):208-214. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200802002
    [3] Hanson A R, Domich E G, Adams H S. Shock tube investigation of the breakup of drops by air blasts[J]. Physics of Fluids, 1963, 6(8):1070-1080. doi: 10.1063/1.1706864
    [4] Joseph D D, Belanger J, Beavers G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream[J]. International Journal of Multiphase Flow, 1999, 25(6):1263-1303. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c83c9253054bb41587c6f360e5e5edf
    [5] Pilch M, Erdman C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop[J]. International Journal of Multiphase Flow, 1987, 13(6):741-757. doi: 10.1016/0301-9322(87)90063-2
    [6] Theofanous T G, Li G J, Dinh T N. Aerobreakup in rarefied supersonic gas flows[J]. Journal of Fluids Engineering, 2004, 126(4):516-527. doi: 10.1115/1.1777234
    [7] Theofanous T G, Li G J. On the physics of aerobreakup[J]. Physics of Fluids, 2008, 20(5):052103. doi: 10.1063/1.2907989
    [8] Theofanous T G, Mitkin V V, Ng C L, et al. The physics of aerobreakup: Ⅱ[J]. Physics of Fluids, 2012, 24(2):022104. doi: 10.1063/1.3680867
    [9] Theofanous T G. Aerobreakup of Newtonian and viscoelastic liquids[J]. Annual Review of Fluid Mechanics, 2011, 43:661-690. doi: 10.1146/annurev-fluid-122109-160638
    [10] Inamura T, Yanaoka H, Kawada T. Visualization of airflow around a single droplet deformed in an airstream[J]. Atomization and Sprays, 2009, 19(7):667-677. doi: 10.1615/AtomizSpr.v19.i7
    [11] Sichani A B, Emami M D. A droplet deformation and breakup model based on virtual work principle[J]. Physics of Fluids, 2015, 27(3):032103. doi: 10.1063/1.4913809
    [12] Chang C H, Deng X, Theofanous T G. Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method[J]. Journal of Computational Physics, 2013, 242:946-990. doi: 10.1016/j.jcp.2013.01.014
    [13] 金仁瀚, 刘勇, 朱冬清, 等.初始直径对单液滴破碎特性影响的试验[J].航空动力学报, 2015, 30(10):2401-2409. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201510014

    Jin Renhan, Liu Yong, Zhu Dongqing, et al. Experiment on impact of initial diameter on breakup characteristic of single droplet[J]. Journal of Aerospace Power, 2015, 30(10):2401-2409. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201510014
    [14] 王超, 吴宇, 施红辉, 等.液滴在激波冲击下的破裂过程[J].爆炸与冲击, 2016, 36(1):129-134. doi: 10.11883/1001-1455(2016)01-0129-06

    Wang Chao, Wu Yu, Shi Honghui, et al. Breakup process of a droplet under the impact of a shock wave[J]. Explosion and Shock Waves, 2016, 36(1):129-134. doi: 10.11883/1001-1455(2016)01-0129-06
    [15] Burgers J M. Appendix B: Flattening of the water-drop with time[J]. Journal of Research of the National Bureau of Standards, 1958, 60:278.
    [16] Wierzba A, Takayama K. Experimental investigation of the aerodynamic breakup of liquid drops[J]. AIAA Journal, 1988, 26(11):1329-1335. doi: 10.2514/3.10044
    [17] Sun M, Saito T, Takayama K, et al. Unsteady drag on a sphere by shock wave loading[J]. Shock Waves, 2005, 14(1/2):3-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2d223db80f5a4cf0848e8aa3eafb5bc0
    [18] Nishikawa H, Kitamura K. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers[J]. Journal of Computational Physics, 2008, 227(4):2560-2581. doi: 10.1016/j.jcp.2007.11.003
    [19] Bird R B, Stewart W E, Lightfoot E N. Transport phenomena[M]. 2nd ed. New York: John Wiley & Sons, Inc., 2002: 1-332.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  4570
  • HTML全文浏览量:  1331
  • PDF下载量:  418
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-24
  • 修回日期:  2016-06-01
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回