Early-stage deformation of liquid drop in shock induced high-speed flow
-
摘要: 基于激波管平台和高速摄影方法对平面激波诱导高速气流中液滴的早期变形现象进行实验研究。研究发现在相近的We数或Re数下,实验参数的改变可导致液滴形态发展出现显著差异。这种差异主要体现在背风面的脊状环形突起、褶皱区以及后驻点区的凹凸形态。对刚性圆球外流的数值模拟显示,液滴变形早期形态与外流场结构和表面气动力分布之间存在鲜明的对应关系。最后采用简化理论推导出一组估测液滴早期变形的表达式。将数值模拟所得气动力数据代入计算发现:导致液滴变形的主要驱动力是液滴表面不均匀压力的挤压效应,而不是界面剪切摩擦所引起的切向流动堆积效应,前者高出后者约2个数量级;此外,采用压力作用理论计算所得液滴外形在主要变形特征和变形量级上均可与实验图像很好地吻合。Abstract: In the present study the early-stage deformation of a liquid drop in the high-speed flow induced by a planar shock wave was experimentally investigated using the shock tube facility and high-speed photography technique. It was found that the variation of the flow and drop conditions may cause significant divergences in the morphology of the drop deformation, even though such classical dominant parameters such as the Weber number or the Reynolds number are conserved. The divergences are mainly on the lee side of the drop, involving major characteristics of the circular ridges, the wrinkle band and the concave-plane convex profile of the lee side polar zone. Numerical simulations of the flow around a sphere show evident correspondence between the deformation patterns and the flow structures as well as the aerodynamic forces distributed along the sphere surface. For further evaluation and understanding of the detailed deformation features, a set of equations were deduced from hydrodynamic theories with necessary simplification. Feeding the equations with the aerodynamic data from numerical simulations, the calculation results indicate that, the main mechanism behind the deformation on the lee side of the drop is the squeezing effect of the uneven pressure distribution, rather than the accumulation effect of the surfacial flow induced by friction, with the former about two orders higher than the latter. Moreover, the drop profiles calculated following the pressure acting theory were found to agree quite well with the real drop patterns, not only in the deformation characteristics but also in the order of deformation magnitudes.
-
Key words:
- drop /
- aero-breakup /
- early-stage deformation /
- high-speed photography /
- drop lee-surface
-
表 1 实验参数
Table 1. Experiment parameters
工况 d/mm p0 /kPa Ma ug /(m·s-1) ρg /(kg·m-3) We Re/104 Oh/10-3 tf /μs tb /μs tshock/μs A 2.66 15.8 1.89 396.3 0.460 2670 1.9 2.3 6.7 312.9 4.04 B 3.76 69.1 1.37 186.2 1.312 2370 4.24 1.9 20.2 557.7 7.89 C 3.94 35.7 1.62 291.8 0.856 3990 4.1 1.9 13.5 461.4 6.99 -
[1] 费立森.煤油在冷态超声速气流中喷射和雾化现象的初步研究[D].合肥: 中国科学技术大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10358-2008091933.htm [2] 万云霞, 黄勇, 朱英.液体圆柱射流破碎过程的实验[J].航空动力学报, 2008, 23(2):208-214. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200802002Wan Yunxia, Huang Yong, Zhu Ying. Experiment on the breakup process of free round liquid jet[J]. Journal of Aerospace Power, 2008, 23(2):208-214. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200802002 [3] Hanson A R, Domich E G, Adams H S. Shock tube investigation of the breakup of drops by air blasts[J]. Physics of Fluids, 1963, 6(8):1070-1080. doi: 10.1063/1.1706864 [4] Joseph D D, Belanger J, Beavers G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream[J]. International Journal of Multiphase Flow, 1999, 25(6):1263-1303. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c83c9253054bb41587c6f360e5e5edf [5] Pilch M, Erdman C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop[J]. International Journal of Multiphase Flow, 1987, 13(6):741-757. doi: 10.1016/0301-9322(87)90063-2 [6] Theofanous T G, Li G J, Dinh T N. Aerobreakup in rarefied supersonic gas flows[J]. Journal of Fluids Engineering, 2004, 126(4):516-527. doi: 10.1115/1.1777234 [7] Theofanous T G, Li G J. On the physics of aerobreakup[J]. Physics of Fluids, 2008, 20(5):052103. doi: 10.1063/1.2907989 [8] Theofanous T G, Mitkin V V, Ng C L, et al. The physics of aerobreakup: Ⅱ[J]. Physics of Fluids, 2012, 24(2):022104. doi: 10.1063/1.3680867 [9] Theofanous T G. Aerobreakup of Newtonian and viscoelastic liquids[J]. Annual Review of Fluid Mechanics, 2011, 43:661-690. doi: 10.1146/annurev-fluid-122109-160638 [10] Inamura T, Yanaoka H, Kawada T. Visualization of airflow around a single droplet deformed in an airstream[J]. Atomization and Sprays, 2009, 19(7):667-677. doi: 10.1615/AtomizSpr.v19.i7 [11] Sichani A B, Emami M D. A droplet deformation and breakup model based on virtual work principle[J]. Physics of Fluids, 2015, 27(3):032103. doi: 10.1063/1.4913809 [12] Chang C H, Deng X, Theofanous T G. Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method[J]. Journal of Computational Physics, 2013, 242:946-990. doi: 10.1016/j.jcp.2013.01.014 [13] 金仁瀚, 刘勇, 朱冬清, 等.初始直径对单液滴破碎特性影响的试验[J].航空动力学报, 2015, 30(10):2401-2409. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201510014Jin Renhan, Liu Yong, Zhu Dongqing, et al. Experiment on impact of initial diameter on breakup characteristic of single droplet[J]. Journal of Aerospace Power, 2015, 30(10):2401-2409. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201510014 [14] 王超, 吴宇, 施红辉, 等.液滴在激波冲击下的破裂过程[J].爆炸与冲击, 2016, 36(1):129-134. doi: 10.11883/1001-1455(2016)01-0129-06Wang Chao, Wu Yu, Shi Honghui, et al. Breakup process of a droplet under the impact of a shock wave[J]. Explosion and Shock Waves, 2016, 36(1):129-134. doi: 10.11883/1001-1455(2016)01-0129-06 [15] Burgers J M. Appendix B: Flattening of the water-drop with time[J]. Journal of Research of the National Bureau of Standards, 1958, 60:278. [16] Wierzba A, Takayama K. Experimental investigation of the aerodynamic breakup of liquid drops[J]. AIAA Journal, 1988, 26(11):1329-1335. doi: 10.2514/3.10044 [17] Sun M, Saito T, Takayama K, et al. Unsteady drag on a sphere by shock wave loading[J]. Shock Waves, 2005, 14(1/2):3-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2d223db80f5a4cf0848e8aa3eafb5bc0 [18] Nishikawa H, Kitamura K. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers[J]. Journal of Computational Physics, 2008, 227(4):2560-2581. doi: 10.1016/j.jcp.2007.11.003 [19] Bird R B, Stewart W E, Lightfoot E N. Transport phenomena[M]. 2nd ed. New York: John Wiley & Sons, Inc., 2002: 1-332.