宽应变率范围下2A16-T4铝合金动态力学性能

惠旭龙 白春玉 刘小川 牟让科 王计真

惠旭龙, 白春玉, 刘小川, 牟让科, 王计真. 宽应变率范围下2A16-T4铝合金动态力学性能[J]. 爆炸与冲击, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08
引用本文: 惠旭龙, 白春玉, 刘小川, 牟让科, 王计真. 宽应变率范围下2A16-T4铝合金动态力学性能[J]. 爆炸与冲击, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08
Xi Xulong, Bai Chunyu, Liu Xiaochuan, Mu Rangke, Wang Jizhen. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion And Shock Waves, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08
Citation: Xi Xulong, Bai Chunyu, Liu Xiaochuan, Mu Rangke, Wang Jizhen. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion And Shock Waves, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08

宽应变率范围下2A16-T4铝合金动态力学性能

doi: 10.11883/1001-1455(2017)05-0871-08
详细信息
    作者简介:

    惠旭龙(1989—),男,硕士,助理工程师, 742839400@qq.com

  • 中图分类号: O347.1

Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates

  • 摘要: 为了研究2A16-T4铝合金的动态力学性能,利用电子万能试验机、高速液压伺服试验机及霍普金森压杆(SHPB)装置进行常温下准静态、中应变率和高应变率的动态力学性能实验,得到不同应变率下的应力应变曲线,基于修正的Johnson-Cook本构模型对它进行拟合,并分析材料中应变率力学特性对模型应变率敏感参量的影响。结果表明:2A16-T4铝合金在应变率10-4~102 s-1范围内应变率敏感性较弱,而在102~103 s-1范围内应变率敏感性较强,且应变率强化效应随塑性应变的增大而减小;同时,在10-4~103 s-1范围内具有较强的应变硬化效应,且应变硬化效应随应变率的增大而减小;此外,修正Johnson-Cook本构模型的拟合结果与实验结果吻合很好,能够很好表征材料的动态力学行为,且考虑材料中应变率力学特性可提高本构模型参量的准确性。
  • 图  1  电子万能试验机

    Figure  1.  INSTRON 8801 test system

    图  2  真实应力应变曲线

    Figure  2.  True stress-strain curve

    图  3  准静态下试件破坏结果

    Figure  3.  Failure results in quasi-static state

    图  4  高速液压伺服试验机

    Figure  4.  INSTRON VHS 160 test system

    图  5  非接触分析系统

    Figure  5.  DIC system

    图  6  试件表面应变场

    Figure  6.  Strain field of specimen's surface

    图  7  动态拉伸应变结果

    Figure  7.  Strain result of dynamic tensile process

    图  8  载荷间接测试方法

    Figure  8.  Indirect loading measurement

    图  9  真实塑性应力应变曲线

    Figure  9.  True plastic stress-strain curves

    图  10  流动应力与应变率的关系

    Figure  10.  Relation of flow stress with strain rates

    图  11  试件拉伸破坏结果

    Figure  11.  Failure result of specimen

    图  12  SHPB装置

    Figure  12.  SHPB setup

    图  13  真实塑性应力应变曲线

    Figure  13.  True plastic stress-strain curves

    图  14  流动应力与应变率的关系

    Figure  14.  Flow stress vs strain rate

    图  15  材料流动应力与应变率关系

    Figure  15.  Relation of flow stress with strain rates

    图  16  2A16-T4铝合金应变率敏感性拟合结果与实验结果对比

    Figure  16.  Comparison of fitted results of Johnson-Cook model with experiment results for 2A16-T4

    图  17  外推结果与实验结果的对比

    Figure  17.  Comparison of extrapolated results with experimental results

    图  18  拟合结果与实验结果的对比

    Figure  18.  Comparison of fitted results with experimental results

    表  1  2A16-T4铝合金应变率参数拟合结果

    Table  1.   Fitted results of strain rate sensitive parameters

    情况 C P C P C P ${\bar{C}} $ ${\bar{P}} $
    ε=0.03 ε=0.08 ε=0.12
    1 2.3×10-3 1.29 1.80×10-3 1.04 1.20×10-3 0.95 1.77×10-3 1.093
    2 4.9×10-9 6.69 4.75×10-9 6.60 4.72×10-9 6.55 4.79×10-9 6.630
    3 1.9×10-11 8.71 1.82×10-11 8.63 1.78×10-11 8.58 1.83×10-11 8.660
    下载: 导出CSV
  • [1] 赵寿根, 何著, 杨嘉陵, 等.几种航空铝材动态力学性能实验[J].北京航空航天大学学报, 2007, 33(8):982-985. doi: 10.3969/j.issn.1001-5965.2007.08.027

    Zhao Shougen, He Zhu, Yang Jialing, et al. Experiment investigation of dynamic material property of aluminum alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(8):982-985. doi: 10.3969/j.issn.1001-5965.2007.08.027
    [2] Holt D L, Babcock S G, Green S J, et al. The strain-rate dependence of the flow stress in some aluminum alloys[J]. Transactions of the ASM: Transactions Quarterly, 1967, 60(2):152-159.
    [3] 王洪欣, 查晓雄.3004铝的动态力学性能及本构关系[J].华中科技大学学报, 2011, 39(5):39-42.

    Wang Hongxin, Zha Xiaoxiong. Dynamic mechanical behavior and constitutive model of 3004 aluminum alloys[J]. Journal of Huazhong University of Science and Technology, 2011, 39(5):39-42.
    [4] 张伟, 魏刚, 肖新科, 等.2A12铝合金本构关系和失效模型[J].兵工学报, 2013, 34(3):276-282. http://d.old.wanfangdata.com.cn/Periodical/bgxb201303004

    Zhang Wei, Wei Gang, Xiao Xinke, et al. Constitutive relation and fracture criterion of 2A12 aluminum alloys[J]. Acta Armamentarii, 2013, 34(3):276-282. http://d.old.wanfangdata.com.cn/Periodical/bgxb201303004
    [5] 张伟, 肖新科, 魏刚.7A04铝合金的本构关系和失效模型[J].爆炸与冲击, 2011, 31(1):81-87. doi: 10.11883/1001-1455(2011)01-0081-07

    Zhang Wei, Xiao Xinke, Wei Gang. Constitutive relation and fracture model of 7A04 aluminum alloys[J]. Explosion and Shock Waves, 2011, 31(1):81-87. doi: 10.11883/1001-1455(2011)01-0081-07
    [6] 张正礼.2024铝合金动态力学本构模型构建[J].沈阳航空航天大学学报, 2014, 31(2):47-50. doi: 10.3969/j.issn.2095-1248.2014.02.011

    Zhang Zhengli. Construction of dynamic mechanical constitutive model of 2024 aluminum[J]. Journal of Shenyang Aerospace University, 2014, 31(2):47-50. doi: 10.3969/j.issn.2095-1248.2014.02.011
    [7] 朱耀.AA 7055铝合金在不同温度及应变率下力学性能的实验研究[D].哈尔滨: 哈尔滨工业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10213-1011278756.htm
    [8] 谢灿军, 童明波, 刘富, 等.7075-T6铝合金动态力学试验及本构模型研究[J].振动与冲击, 2014, 33(18):100-114. http://d.old.wanfangdata.com.cn/Periodical/zdycj201418018

    Xie Canjun, Tong Mingbo, Liu Fu, et al. Dynamic tests and constitutive model for 7075-T6 aluminum alloy[J]. Journal of Vibration and Shock, 2014, 33(18):110-114. http://d.old.wanfangdata.com.cn/Periodical/zdycj201418018
    [9] 杨超, 朱涛, 肖守讷.列车车体铝合金动态力学性能及其对吸能的影响[J].中南大学学报(自然科学版), 2015, 46(7):2744-2749.

    Yang Chao, Zhu Tao, Xiao Shoune. Dynamic mechanical properties of aluminum alloy used in carbodies of trains and effect on energy absorption[J]. Journal of Central South University (Science and Technology), 2015, 46(7):2744-2749.
    [10] Yatnalkar R S. Experimental investigation of plastic deformation of Ti-6Al-4V under various loading conditions[D]. The Ohio State: The Ohio State University, 2010.
    [11] Wood P K C, Schley C A, Kenny S, et al. Validating performance of automotive materials at high strain rate for improved crash design[C]//9th International LS-DYNA Users Conference. Detroit, 2006.
    [12] 白春玉, 刘小川, 周苏枫, 等.中应变率下材料动态拉伸关键参数测试方法[J].爆炸与冲击, 2015, 35(4):507-512. doi: 10.11883/1001-1455(2015)04-0507-06

    Bai Chunyu, Liu Xiaochuan, Zhou Sufeng, et al. Material key parameters measurement method in the dynamic tensile testing at intermediate strain rate[J]. Explosion and Shock Waves, 2015, 35(4):507-512. doi: 10.11883/1001-1455(2015)04-0507-06
    [13] 余同希, 邱信明.冲击动力学[M].北京:清华大学出版社, 2011.
    [14] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 541-547.
    [15] Kang W J, Cho S S, Huh H, et al. Modified Johnson-Cook model for vehicle body crashworthiness simulation[J]. International Journal of Vehicle Design, 1999, 21(4):424-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caec5e2883f57b1720cefbd750b33c61
    [16] Cowper G R, Symonds P S. Strain hardening and strain rate effects in the impact loading of cantilever beams[R]. Division of Applied Mathematics, Brown University, 1957.
    [17] Huh H, Kang W J, Han S S. A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals[J]. Experimental Mechanics, 2002, 42(1):8-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=355b24d3ea891696370e4add7922dbb8
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  4638
  • HTML全文浏览量:  1348
  • PDF下载量:  389
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-02
  • 修回日期:  2016-08-13
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回