• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

微喷射物质作用下脉冲信号电探针的放电机理

文雪峰 王健 王晓燕 胡杨 陈永涛

李英雷, 胡时胜, 李英华. A95陶瓷材料的动态压缩测试研究[J]. 爆炸与冲击, 2004, 24(3): 233-239. doi: 10.11883/1001-1455(2004)03-0233-7
引用本文: 文雪峰, 王健, 王晓燕, 胡杨, 陈永涛. 微喷射物质作用下脉冲信号电探针的放电机理[J]. 爆炸与冲击, 2017, 37(5): 887-892. doi: 10.11883/1001-1455(2017)05-0887-06
Wen Xuefeng, Wang Jian, Wang Xiaoyan, Hu Yang, Chen Yongtao. Discharging mechanism of pulse signal electric probe conducted by micro-jetting[J]. Explosion And Shock Waves, 2017, 37(5): 887-892. doi: 10.11883/1001-1455(2017)05-0887-06
Citation: Wen Xuefeng, Wang Jian, Wang Xiaoyan, Hu Yang, Chen Yongtao. Discharging mechanism of pulse signal electric probe conducted by micro-jetting[J]. Explosion And Shock Waves, 2017, 37(5): 887-892. doi: 10.11883/1001-1455(2017)05-0887-06

微喷射物质作用下脉冲信号电探针的放电机理

doi: 10.11883/1001-1455(2017)05-0887-06
基金项目: 

国家自然科学基金项目 11502253

中国工程物理研究院科学技术发展基金项目 2015B0201002

详细信息
    作者简介:

    文雪峰(1988-),男,硕士,助理研究员

    通讯作者:

    王健,wj19660606@sina.cn

  • 中图分类号: O384

Discharging mechanism of pulse signal electric probe conducted by micro-jetting

  • 摘要: 针对脉冲信号电探针在微喷射物质作用下出现的“非正常”放电现象,提出了微喷射物质K+Rx等效电路模型,用以解释微喷射物质导通电探针放电机理。开展爆轰实验,联合X射线测试技术,确定了电探针放电区域处于微喷射区与微层裂区的过渡地带,并发现电探针的3类“非正常”放电现象。建立电路仿真模型,将微喷射物质等效成K+Rx电路,调节K+Rx等效电路模型参数,模拟电探针的3类“非正常”放电现象。仿真结果表明,K+Rx等效电路模型很好地解释了微喷射物质作用下脉冲信号电探针的放电机理。
  • 图  1  金属样品表面状态

    Figure  1.  Surface conditions of the metal samples

    图  2  爆轰加载实验装置

    Figure  2.  Explosive loading experiment setup

    图  3  通过X射线图像反演得到的相对密度分布

    Figure  3.  Relative density obtained by X-ray photograph inversion

    图  4  电探针放电波形

    Figure  4.  Discharging waveforms of the electric probe

    图  5  电探针测试电路

    Figure  5.  Test circuit of the electric probe

    图  6  K+Rx等效电路模型

    Figure  6.  K+Rx equivalent circuit model

    图  7  电探针测试系统仿真电路

    Figure  7.  Simulation circuit of the electric probe measuring system

    图  8  放电现象仿真结果

    Figure  8.  Simulation results of the discharge phenomena

    表  1  电探针信号起跳时间

    Table  1.   Jump time of electric probe signal

    D/mm 第1圈(r=4.0mm) 第2圈(r=7.5mm) 第3圈(r=11.0mm)
    测点数 平均起跳时间/μs 测点数 平均起跳时间/μs 测点数 平均起跳时间/μs
    25 2 13.45 2 13.60 2 12.12
    30 4 16.15 2 16.15 2 16.80
    35 2 18.62 4 18.83 4 18.12
    40 2 21.14 2 21.70 2 22.10
    下载: 导出CSV
  • [1] 黄正平.爆炸与冲击电测技术[M].北京:国防工业出版社, 2006:71-106.
    [2] 金山, 陈永涛, 汤铁钢, 等.多点激光干涉测速系统和电探针技术在飞片速度测量中的应用对比[J].高压物理学报, 2012, 26(5):571-576.

    Jin Shan, Chen Yongtao, Tang Tiegang, et al. Comparison of multi-channel VISAR and electric probe technology in measuring free-surface velocity of metal flyer[J]. Chinese Journal of High Pressure Physics, 2012, 26(5):571-576.
    [3] 孙永强, 何智, 王珺.一种高精度爆速测量方法[J].含能材料, 2012, 20(3):329-332. doi: 10.3969/j.issn.1006-9941.2012.03.014

    Sun Yongqiang, He Zhi, Wang Jun. A precision experimental method of measurement detonation velocity[J]. Chinese Journal of Energetic Materials, 2012, 20(3):329-332. doi: 10.3969/j.issn.1006-9941.2012.03.014
    [4] Chen Y, Hu H, Tang T, et al. Experimental study of ejecta from shock melted lead[J]. Journal of Applied Physics, 2012, 111(5):053509. doi: 10.1063/1.3692570
    [5] Buttler W T, Oró D M, Olson R T, et al. Second shock ejecta measurements with an explosively driven two-shockwave drive[J]. Journal of Applied Physics, 2014, 116(10):103519. doi: 10.1063/1.4895053
    [6] 唐敬友, 伍绍珍, 王藩侯, 等.冲击波加热的氦气与氩气对电探针导通的影响[J].高压物理学报, 2000, 14(4):285-290. doi: 10.3969/j.issn.1000-5773.2000.04.009

    Tang Jingyou, Wu Shaozhen, Wang Fanhou, et al. The effect of shock-heated gaseous helium and argon on pin shortening[J]. Chinese Journal of High Pressure Physics, 2000, 14(4):285-290. doi: 10.3969/j.issn.1000-5773.2000.04.009
    [7] 胡杨, 胡美娥, 张宇红, 等.分布参数与绝缘性变化对脉冲形成网络的影响[J].高能量密度物理, 2014(2):62-67.
    [8] 胡杨, 胡美娥, 陈永涛, 等.分布参数与绝缘性对电探针脉冲形成电路影响浅析[J].测控技术, 2015, 34(8):5-7. doi: 10.3969/j.issn.1000-8829.2015.08.002

    Hu Yang, Hu Mei'e, Chen Yongtao, et al. Effect of distribution parameter and insulativity on electric probe pulse-generating circuit[J]. Measurement & Control Technology, 2015, 34(8):5-7. doi: 10.3969/j.issn.1000-8829.2015.08.002
    [9] 王为, 王翔.二级轻气炮发射过程中前冲气体的初步研究[J].高压物理学报, 2004, 18(1):94-96. doi: 10.3969/j.issn.1000-5773.2004.01.017

    Wang Wei, Wang Xiang. Measurement of the precursor gas accompanied with the launch of two-stage gas gun[J]. Chinese Journal of High Pressure Physics, 2004, 18(1):94-96. doi: 10.3969/j.issn.1000-5773.2004.01.017
    [10] 王翔, 贾路峰, 傅秋卫, 等.宽脉冲网络信号源及应用[J].高压物理学报, 2005, 19(3):279-283. doi: 10.3969/j.issn.1000-5773.2005.03.015

    Wang Xiang, Jia Lufeng, Fu Qiuwei, et al. Broad pulse forming circuit and its application[J]. Chinese Journal of High Pressure Physics, 2005, 19(3):279-283. doi: 10.3969/j.issn.1000-5773.2005.03.015
  • 期刊类型引用(36)

    1. 何理,殷琳,钟冬望,张鑫玥,赵永明,熊海涛,陈莎莎,NJAMBA Bruno. 爆破振动强度、波形与频谱研究综述:预测及主动控制. 爆破. 2024(03): 189-204+262 . 百度学术
    2. 王士明,周发明,刘聪. 浅孔控制爆破技术在环境和地质双复杂条件下基坑开挖工程中的应用. 煤矿爆破. 2024(04): 33-37 . 百度学术
    3. 汤松,李立峰,郑雅风,赵渊,仲鹏,王淼. 基于改进的线性叠加法和岩石破碎效果的最优延期时间分析. 爆破. 2023(03): 12-19 . 百度学术
    4. 杨璐瑶,莫宏毅,王雪松,全铭,徐振洋. 应力叠加下的爆破减振效应现场试验研究. 金属矿山. 2023(10): 24-30 . 百度学术
    5. 白晓杰,耿新宇,蔺海洋,董法,春坚超,陈亚军. 非均质复杂岩体深凹露天煤矿爆破参数优选确定. 煤炭技术. 2023(12): 46-49 . 百度学术
    6. 赵民强. 下穿山岭隧道爆破振动效应的数值模拟分析. 科技与创新. 2023(24): 95-97 . 百度学术
    7. 项荣军,刘传鹏,李胜林,凌天龙. 隧道内部爆破振动传播规律与降振技术研究. 爆破. 2023(04): 82-88+200 . 百度学术
    8. 龚敏,曹贞洋,石发才,吴昊骏,吴晓东,周世均. 双临空面条件下隧道爆破近区振动波形构造与应用. 振动与冲击. 2022(01): 52-59+97 . 百度学术
    9. 谢先启,黄小武,姚颖康,何理,伍岳. 露天深孔台阶精细爆破技术研究进展. 金属矿山. 2022(07): 7-18 . 百度学术
    10. 何理,杨仁树,钟冬望,解联库,张奎,杨磊. 非电起爆网路修正单响药量计算及PPV预测应用实例. 振动与冲击. 2022(15): 54-62 . 百度学术
    11. 黄强. 隧道爆破振动场中断层对岩体远场振动特性影响研究. 铁道建筑技术. 2022(09): 55-59+80 . 百度学术
    12. 赵岩,王小敬,王海龙,王东升. 交叉隧道爆破振速回归分析及对比研究. 工程爆破. 2022(05): 121-127 . 百度学术
    13. 褚怀保,余梦飞,严少洋,王昌,孙博. 高压气体爆破与炸药爆破振动试验研究. 爆破. 2022(04): 177-185 . 百度学术
    14. 林飞. 复杂环境下爆破降振的微差时间优选. 金属矿山. 2021(04): 59-63 . 百度学术
    15. 孙鹏昌,卢文波,雷振,陈明,李瑞泽,李福千. 单薄山体岩质高边坡爆破振动响应分析及安全控制. 岩土工程学报. 2021(05): 877-885 . 百度学术
    16. 关振长,朱凌枫,俞伯林. 隧道掘进排孔爆破的精细化数值模拟. 振动与冲击. 2021(11): 154-162 . 百度学术
    17. 李永刚,马修胜,马修利. 露天煤矿剥离台阶降低大块率爆破方法研究. 科学技术创新. 2021(19): 102-103 . 百度学术
    18. 李祥龙,张其虎,王建国,杨德源,李斌,朱兴彪. 地下爆破精确延时逐孔起爆减振试验研究. 黄金科学技术. 2021(03): 401-410 . 百度学术
    19. 包松,郭连军,莫宏毅,徐振洋. 考虑高程与能量的爆破振动持时分析. 金属矿山. 2021(08): 67-70 . 百度学术
    20. 王子明,闫建文,杨振军. 洞室爆破振动信号时频分析及能量分布研究. 西安理工大学学报. 2021(02): 261-268 . 百度学术
    21. 何理,杨仁树,钟东望,李鹏,吴春平,陈江伟. 毫秒延时爆破等效单响药量计算及振速预测. 爆炸与冲击. 2021(09): 132-144 . 本站查看
    22. 何理,谢先启,韩传伟,钟冬望,王洪刚,黄小武,黄炳林. 基于地震波频谱分析与线性叠加的电子雷管延时优选. 金属矿山. 2021(11): 41-48 . 百度学术
    23. 余良松,周龙杰,胡英国,胡伟. 两河口水电站级配料开采爆破孔间延时优选的试验研究. 爆破. 2021(04): 81-88 . 百度学术
    24. 杨茂森,陈永祥,郝润华. 露天煤矿超高台阶抛掷爆破振动效应评价. 爆破. 2021(04): 156-162 . 百度学术
    25. 孙冰,罗志业,曾晟,何旺. 爆破振动影响因素及控制技术研究现状. 矿业安全与环保. 2021(06): 129-134 . 百度学术
    26. 李猛,范延静,李彬,潘建荣,王湛. 爆破振动对高层框架-剪力墙结构的影响. 工程爆破. 2021(06): 26-31 . 百度学术
    27. 何山,郭剑锋,韩全吉. 山岭隧道微差爆破技术在周边建筑物保护中的应用. 科技通报. 2019(01): 15-18 . 百度学术
    28. 陈亚军,常治国,赵斐. 干旱区露天矿爆破作用线理论与实践研究. 采矿与安全工程学报. 2019(02): 357-363 . 百度学术
    29. 叶海旺,袁尔君,雷涛,龙梅. 基于量纲分析的爆破振动质点峰值速度预测公式. 金属矿山. 2019(05): 56-61 . 百度学术
    30. 相志斌,杨仕教,蒲成志,朱忠华,郑建礼. 基于爆破振动对孔间微差时间的确定. 中国矿业. 2019(11): 123-127 . 百度学术
    31. 王伟,李兴华,陈作彬,范磊,孙飞. 基于小波包变换的爆破振动信号能量熵特征分析. 爆破器材. 2019(06): 19-23 . 百度学术
    32. 李祥龙,骆浩浩,胡辉,张松涛,李克钢. 延期时间对高台阶抛掷爆破效果的影响. 北京理工大学学报. 2018(06): 579-584 . 百度学术
    33. 张绍银,王瑞鹏,吴顺川,赵革. 露天矿边坡爆破振动高程效应分析. 化工矿物与加工. 2018(01): 35-39 . 百度学术
    34. 张景华,刘钟阳. 露天采矿爆破对中缅油气管道振动的影响试验. 油气储运. 2018(07): 816-821 . 百度学术
    35. 陈士海,吴建. 双孔微差及长柱药包爆破振动数值模拟研究. 爆破. 2017(03): 46-52 . 百度学术
    36. 何理,钟冬望,陈晨,黄雄. 岩质高边坡开挖施工的爆破振动监测与分析. 金属矿山. 2017(01): 6-10 . 百度学术

    其他类型引用(28)

  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  4131
  • HTML全文浏览量:  1276
  • PDF下载量:  227
  • 被引次数: 64
出版历程
  • 收稿日期:  2016-03-09
  • 修回日期:  2016-05-30
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回