• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

球壳塑性变形下的应变增长现象

刘文祥 张庆明 钟方平 程帅 张德志

程关兵, 李俊仙, 李书明, 瞿红春. 氢气/丙烷/空气预混气体爆轰性能的实验研究[J]. 爆炸与冲击, 2015, 35(2): 249-254. doi: 10.11883/1001-1455(2015)02-0249-06
引用本文: 刘文祥, 张庆明, 钟方平, 程帅, 张德志. 球壳塑性变形下的应变增长现象[J]. 爆炸与冲击, 2017, 37(5): 893-898. doi: 10.11883/1001-1455(2017)05-0893-06
Cheng Guan-bing, Li Jun-xian, Li Shu-ming, Qu Hong-chun. An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures[J]. Explosion And Shock Waves, 2015, 35(2): 249-254. doi: 10.11883/1001-1455(2015)02-0249-06
Citation: Liu Wenxiang, Zhang Qingming, Zhong Fangping, Cheng Shuai, Zhang Dezhi. Strain growth of spherical shell subjected to internal blast loading during plastic response[J]. Explosion And Shock Waves, 2017, 37(5): 893-898. doi: 10.11883/1001-1455(2017)05-0893-06

球壳塑性变形下的应变增长现象

doi: 10.11883/1001-1455(2017)05-0893-06
详细信息
    作者简介:

    刘文祥(1982—),男,博士研究生,副研究员, wxliu@ustc.edu

  • 中图分类号: O347.3

Strain growth of spherical shell subjected to internal blast loading during plastic response

  • 摘要: 应变增长现象会对容器安全形成威胁。以往研究涉及的应变增长现象大多在壳体弹性变形范围内,本文中实验观察到球壳塑性变形时的应变增长现象,应变增长系数(最大应变值与第一个应变峰的比值)最大值达到1.16。实验还获得了容器内壁压力-时间曲线,并利用球壳响应理论分析出应变增长现象是由容器内壁的周期性多脉冲载荷引起的,该载荷存在3个较明显的脉冲,前两个脉冲对应变增长现象起主要作用。
  • 图  1  球形容器照片

    Figure  1.  Photo of spherical vessel

    图  2  应变片位置和方向

    Figure  2.  Positions and directions of strain guages

    图  3  典型的应变曲线

    Figure  3.  Strain-time curve of spherical shell

    图  4  球壳内壁的周期性多脉冲载荷

    Figure  4.  Pressure-time curve of blast loading on inner wall of spherical shell

    图  5  由爆炸载荷计算的应变曲线与实验应变曲线的比较

    Figure  5.  Comparison between strain-time curves obtained by experiment and calculated from pressure-time curve

    图  6  后续脉冲出现时间对球壳响应的影响

    Figure  6.  Strain-time curves with second pulse appearing at different time points

    表  1  球壳应变数据

    Table  1.   Experimental strain of spherical shell

    应变片位置 方向 第一个应变峰/10-3 最大应变值/10-3 最大值应变值所处峰的位置 应变增长系数
    实测值 平均值
    S1 1 10.804 11.081±2.5% 10.804 1 1.00
    2 10.804 12.606 2 1.16
    3 11.635 13.063 2 1.12
    S2 1 10.802 10.262±6.6% 12.057 2 1.11
    2 10.397 12.057 2 1.15
    3 9.588 10.802 2 1.12
    S3 1* 11.945 11.225±6.4% 12.197 2 1.02
    (12.456) (3)
    2 10.808 11.610 2 1.07
    3 10.922 11.485 2 1.05
    S4 1 9.140 9.883±7.5% 9.140 1 1.00
    2 10.197 10.503 2 1.03
    3 10.312 10.503 2 1.01
    S5 1 11.821 13.159±14.3% 11.821 1 1.00
    2 15.036 - - -
    3 12.619 12.989 2 1.02
    S6 1 13.866 13.762±4.3% 15.211 2 1.09
    2 14.254 16.427 2 1.15
    3 13.167 14.571 2 1.10
    注:标注*的数据出现特殊情况,其第二个应变峰虽大于第一个应变峰,但应变最大值出现在第三个应变峰上。
    下载: 导出CSV
  • [1] Dong Q, Li Q M, Zheng J Y. Further study on strain growth in spherical containment vessels subjected to internal blast loading[J]. International Journal of Impact Engineering, 2010, 37(2):196-206. doi: 10.1016/j.ijimpeng.2009.09.001
    [2] Buzukov A A. Characteristics of the behavior of the walls of explosion chambers under the action of pulsed loading[J]. Combustion Explosion & Shock Waves, 1976, 12(4):549-554.
    [3] Duffey T A, Romero C. Strain growth in spherical explosive chambers subjected to internal blast loading[J]. International Journal of Impact Engineering, 2003, 28(9):967-983. doi: 10.1016/S0734-743X(02)00169-0
    [4] Karpp R R, Duffey T A, Neal T R. Response of containment vessels to explosive blast loading[J]. Journal of Pressure Vessel Technology, 1980, 105(1):23-27.
    [5] Abakumov A I, Egunov V V, Ivanov A G, et al. Calculation and experiments on the deformation of explosion-chamber shells[J]. Journal of Applied Mechanics & Technical Physics, 1984, 25(3):455-458.
    [6] Zhu W, Xue H, Zhou G, et al. Dynamic response of cylindrical explosive chambers to internal blast loading produced by a concentrated charge[J]. International Journal of Impact Engineering, 1997, 19(9/10):831-845.
    [7] Dong Q, Li Q M, Zheng J Y. Interactive mechanisms between the internal blast loading and the dynamic elastic response of spherical containment vessels[J]. International Journal of Impact Engineering, 2010, 37(4):349-358. doi: 10.1016/j.ijimpeng.2009.10.004
    [8] Baker W E. The elastic-plastic response of thin spherical shells to internal blast loading[J]. Journal of Applied Mechanics, 1960, 27(1):139-144. doi: 10.1115/1.3643888
  • 期刊类型引用(6)

    1. 胡俊华,董奇,胡八一,任逸飞,黄广炎. 抗爆容器的内部爆炸效应和动态力学行为研究进展. 含能材料. 2024(09): 986-1008 . 百度学术
    2. 刘文祥,张德志,程帅,马艳军. 爆炸容器研究进展. 现代应用物理. 2023(03): 61-69 . 百度学术
    3. 刘文祥,张德志,钟方平,程帅,张庆明. 爆炸下球壳变形空间周期分布的理论计算方法. 爆炸与冲击. 2020(06): 78-85 . 本站查看
    4. 程帅,师莹菊,殷文骏,刘文祥,唐仕英,张德志. 泡沫铝内衬对抗内部爆炸钢筒变形的影响. 爆炸与冲击. 2020(07): 56-63 . 本站查看
    5. 程帅,张德志,刘文祥,殷文骏,师莹菊,陈博,唐仕英. 球形爆炸容器法兰联接螺栓的应变增长现象. 爆炸与冲击. 2019(03): 93-100 . 本站查看
    6. 徐景林,顾文彬,刘建青,王振雄,刘欣,胡云昊,韩阳明. 圆柱形爆炸容器的应变增长现象. 兵工学报. 2018(S1): 96-101 . 百度学术

    其他类型引用(1)

  • 加载中
推荐阅读
矩形管下气相螺旋爆轰的结构及传播方式
贾旭飞 等, 爆炸与冲击, 2024
磁场效应对甲烷爆炸影响的机理
高建村 等, 爆炸与冲击, 2023
Cf3i和co2抑制甲烷-空气爆炸实验研究
程方明 等, 爆炸与冲击, 2022
氢气-甲烷-乙醇混合燃料的爆炸压力特性
郭宏展 等, 爆炸与冲击, 2023
多种材质障碍物对甲烷-氢气预混燃气的促爆影响
焦一飞 等, 高压物理学报, 2024
球形非金属材料对甲烷掺氢爆炸抑制机理研究
唐毅 等, 高压物理学报, 2022
圆柱形障碍物对2h2+o2+nar预混气体的再起爆实验研究
刘虎 等, 高压物理学报, 2023
The effect of lactic acid bacteria on lipid metabolism and flavor of fermented sausages
Xia, Lingyan et al., FOOD BIOSCIENCE, 2023
H2 and ch4 adsorption on coal: insights from experiment and mathematical model
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025
Cumulative damage effect and stability analysis of the rock slope with a locked segment under cyclic blasting
LIU Kangqi et al., EXPLOSION AND SHOCK WAVES, 2025
Powered by
图(6) / 表(1)
计量
  • 文章访问数:  4212
  • HTML全文浏览量:  1235
  • PDF下载量:  315
  • 被引次数: 7
出版历程
  • 收稿日期:  2016-04-21
  • 修回日期:  2016-10-12
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回