不同加载速度下脆性颗粒的破坏特性

易洪昇 徐松林 单俊芳 张鸣

易洪昇, 徐松林, 单俊芳, 张鸣. 不同加载速度下脆性颗粒的破坏特性[J]. 爆炸与冲击, 2017, 37(5): 913-922. doi: 10.11883/1001-1455(2017)05-0913-10
引用本文: 易洪昇, 徐松林, 单俊芳, 张鸣. 不同加载速度下脆性颗粒的破坏特性[J]. 爆炸与冲击, 2017, 37(5): 913-922. doi: 10.11883/1001-1455(2017)05-0913-10
Yi Hongsheng, Xu Songlin, Shan Junfang, Zhang Ming. Fracture characteristics of brittle particles at different loading velocities[J]. Explosion And Shock Waves, 2017, 37(5): 913-922. doi: 10.11883/1001-1455(2017)05-0913-10
Citation: Yi Hongsheng, Xu Songlin, Shan Junfang, Zhang Ming. Fracture characteristics of brittle particles at different loading velocities[J]. Explosion And Shock Waves, 2017, 37(5): 913-922. doi: 10.11883/1001-1455(2017)05-0913-10

不同加载速度下脆性颗粒的破坏特性

doi: 10.11883/1001-1455(2017)05-0913-10
基金项目: 

国家自然科学基金项目 11602267

国家自然科学基金项目 11472264

国家自然科学基金项目 11672286

国家自然科学基金项目 11272304

详细信息
    作者简介:

    易洪昇(1990-),男,硕士研究生

    通讯作者:

    徐松林,slxu99@ustc.edu.cn

  • 中图分类号: O383

Fracture characteristics of brittle particles at different loading velocities

  • 摘要: 对直径为8mm的K9玻璃球进行了加载速度为2×10-7和2×10-6m/s的准静态单轴压缩实验以及加载速度为3.4、7.1和10.6m/s的动态单轴压缩实验,研究了K9玻璃单颗粒破碎强度的Weibull分布特性,结合破碎产物的形貌特征,分析了不同加载速度下脆性材料拉伸破坏机制和剪切破坏机制的转变过程,提出了一种拉剪耦合的时序破坏模型,由此揭示了加载速度与3个破坏区的关系。考虑拉伸和剪切失效准则,应用ABAQUS软件进行数值模拟,并初步验证了该破坏模型的冲击过程。研究结果对于认识脆性颗粒材料的动态破坏具有很好的参考意义。
  • 图  1  改进后的MTS装置局部

    Figure  1.  Modified parts of MTS device

    图  2  典型的轴向压力-位移曲线

    Figure  2.  Typical axial force-displacement curves

    图  3  SHPB装置示意图

    Figure  3.  Schematic diagram of SHPB setup

    图  4  动态实验的典型原始波形

    Figure  4.  Typical recorded waveforms of dynamic experiment

    图  5  试件冲击压缩破坏临界状态的确定

    Figure  5.  Determination of the critical state of the specimen failure

    图  6  不同加载速度下的Weibull分布统计

    Figure  6.  Weibull distribution at different impact velocities

    图  7  实验组S-1中的3种典型破碎特征

    Figure  7.  Three typical characteristics of experimental group S-1

    图  8  实验组S-1的破碎演变过程

    Figure  8.  Process of the breaking evolution of experimental group S-1

    图  9  冲击破碎演变过程

    Figure  9.  Process of the breaking evolution under impact loading

    图  10  K9玻璃球的SHPB实验产物和钠钙硅玻璃珠冲击平板实验产物[17]

    Figure  10.  Product of K9 glass sphere in SHPB experiment and fragments of soda-lime glass sphere in particle impact experiments[17]

    图  11  不同加载速度下玻璃球破碎演变流程图

    Figure  11.  Flow chart of the breaking evolution of glass sphere at different loading velocities

    图  12  Weibull特征破坏力与加载速度的关系

    Figure  12.  Weibull characteristic strength vs.impact velocity

    图  13  SHPB实验有限元模型

    Figure  13.  Finite element model of SHPB experiment

    图  14  玻璃球的剖面应力分布

    Figure  14.  Stress distribution on the profile of glass sphere

    表  1  Weibull分布的拟合参数

    Table  1.   Fitting parameters of Weibull distribution

    实验组 n v/(m·s-1) m σ0/MPa r
    S-1 24 2×10-7 7.52 44.18 0.946
    S-2 28 2×10-6 2.82 54.13~69.02 0.862
    D-1 24 3.4 9.01 79.50 0.926
    D-2 24 7.1 7.05 114.85 0.945
    D-3 24 10.6 6.17 123.91 0.980
    下载: 导出CSV
  • [1] 陈生水, 霍家平, 章为民."5·12"汶川地震对紫坪铺混凝土面板坝的影响及原因分析[J].岩土工程学报, 2008, 30(6):795-801. doi: 10.3321/j.issn:1000-4548.2008.06.003

    Chen Shengshui, Huo Jiaping, Zhang Weimin. Analysis of effects of "5·12" Wenchuan earthquake on Zipingpu concrete face rock-fill dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6):795-801. doi: 10.3321/j.issn:1000-4548.2008.06.003
    [2] 孙成林.2003年中国粉体工业现状[J].硫磷设计与粉体工程, 2004(4):7-10. doi: 10.3969/j.issn.1009-1904.2004.04.002

    Sun Chenglin. Present situation of China's bulk material handling industry in 2003[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2004(4):7-10. doi: 10.3969/j.issn.1009-1904.2004.04.002
    [3] Hostler S R. Wave propagation in granular materials[D]. Los Angeles: California Institute of Technology, 2004.
    [4] 郑文, 徐松林, 胡时胜.侧限压缩下干燥砂的动态力学性能[J].爆炸与冲击, 2011, 31(6):619-623. doi: 10.11883/1001-1455(2011)06-0619-05

    Zheng Wen, Xu Songlin, Hu Shisheng. Dynamic mechanical properties of dry sand under confined compression[J]. Explosion and Shock Waves, 2011, 31(6):619-623. doi: 10.11883/1001-1455(2011)06-0619-05
    [5] 黄俊宇, 徐松林, 王道荣, 等.脆性颗粒材料的动态多尺度模型研究[J].岩土力学, 2013, 34(4):15-25. http://d.old.wanfangdata.com.cn/Periodical/ytlx201304004

    Huang Junyu, Xu Songlin, Wang Daorong, et al. Investigation on dynamic multiscale model for brittle granular materials[J]. Rock and Soil Mechanics, 2013, 34(4):15-25. http://d.old.wanfangdata.com.cn/Periodical/ytlx201304004
    [6] Huang J, Xu S, Hu S. Influence of particle breakage on the dynamic compression responses of brittle granular materials[J]. Mechanics of Materials, 2014, 68(1):15-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8ea5fda98364f87c012e63a533916200
    [7] Huang J, Xu S, Hu S. Effects of grain size and gradation on the dynamic responses of quartz sands[J]. International Journal of Impact Engineering, 2013, 59(9):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59a54936136a4136e9aabd7251787ea7
    [8] Huang J Y, Lu L, Fan D, et al. Heterogeneity in deformation of granular ceramics under dynamic loading[J]. Scripta Materialia, 2016, 111:114-118. doi: 10.1016/j.scriptamat.2015.08.028
    [9] Salman A D, Biggs C A, Fu J, et al. An experimental investigation of particle fragmentation using single particle impact studies[J]. Powder Technology, 2002, 128(1):36-46. doi: 10.1016/S0032-5910(02)00151-1
    [10] 陈星.基于ABAQUS的冰雹撞击有限元分析[D].呼和浩特: 内蒙古工业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10128-1014012690.htm
    [11] Huang J, Xu S, Hu S. The role of contact friction in the dynamic breakage behavior of granular materials[J]. Granular Matter, 2015, 17(1):111-120. doi: 10.1007/s10035-014-0543-z
    [12] Huang J, Xu S, Yi H, et al. Size effect on the compression breakage strengths of glass particles[J]. Powder Technology, 2014, 268(1):86-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4d228583d84abb7a94a657b3a95a1c17
    [13] 徐松林, 唐志平, 谢卿, 等.压剪联合冲击下K9玻璃中的失效波[J].爆炸与冲击, 2005, 25(5):385-392. doi: 10.3321/j.issn:1001-1455.2005.05.001

    Xu Songlin, Tang Zhiping, Xie Qing, et al. Experimental investigation on failure wave in K9 glass under combined pressure and shear impact loading[J]. Explosion and Shock Waves, 2005, 25(5):385-392. doi: 10.3321/j.issn:1001-1455.2005.05.001
    [14] 胡时胜, 王礼立, 宋力, 等.Hopkinson压杆技术在中国的发展回顾[J].爆炸与冲击, 2014, 34(6):641-657. doi: 10.11883/1001-1455(2014)06-0641-17

    Hu Shisheng, Wang Lili, Song Li, et al. Review of the development of Hopkinson pressure bar technique in China[J]. Explosion and Shock Waves, 2014, 34(6):641-657. doi: 10.11883/1001-1455(2014)06-0641-17
    [15] McDowell G R, Amon A. The application of Weibull statistics to the fracture of soil particles[J]. Journal of the Japanese Geotechnical Society Soils & Foundation, 2000, 40(5):133-141.
    [16] Hertz H. On the contact of elastic solids[J]. Journal für die Reine und Angewandte Mathematik, 1882, 92:156-171. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0805.0712
    [17] Cheong Y S, Reynolds G K, Salman A D, et al. Modelling fragment size distribution using two-parameter Weibull equation[J]. International Journal of Mineral Processing, 2004, 74(50):S227-S237. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210611406/
    [18] Salman A D, Gorham D A. The fracture of glass spheres[J]. Powder Technology, 2000, 107(1):179-185.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  4213
  • HTML全文浏览量:  1315
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-23
  • 修回日期:  2016-04-22
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回