鸟体姿态对结构抗鸟撞性能的影响

寇剑锋 徐绯 纪三红 张笑宇

寇剑锋, 徐绯, 纪三红, 张笑宇. 鸟体姿态对结构抗鸟撞性能的影响[J]. 爆炸与冲击, 2017, 37(5): 937-944. doi: 10.11883/1001-1455(2017)05-0937-08
引用本文: 寇剑锋, 徐绯, 纪三红, 张笑宇. 鸟体姿态对结构抗鸟撞性能的影响[J]. 爆炸与冲击, 2017, 37(5): 937-944. doi: 10.11883/1001-1455(2017)05-0937-08
Kou Jianfeng, Xu Fei, Ji Sanhong, Zhang Xiaoyu. Influence of bird yaw/pitch orientation on bird-strike resistance of aircraft structures[J]. Explosion And Shock Waves, 2017, 37(5): 937-944. doi: 10.11883/1001-1455(2017)05-0937-08
Citation: Kou Jianfeng, Xu Fei, Ji Sanhong, Zhang Xiaoyu. Influence of bird yaw/pitch orientation on bird-strike resistance of aircraft structures[J]. Explosion And Shock Waves, 2017, 37(5): 937-944. doi: 10.11883/1001-1455(2017)05-0937-08

鸟体姿态对结构抗鸟撞性能的影响

doi: 10.11883/1001-1455(2017)05-0937-08
基金项目: 

高等学校学科创新引智计划项目 B07050

详细信息
    作者简介:

    寇剑锋(1984—),男,博士研究生

    通讯作者:

    徐绯,E-mail:xufei@nwpu.edu.cn

  • 中图分类号: O383.3;V215.2

Influence of bird yaw/pitch orientation on bird-strike resistance of aircraft structures

  • 摘要: 低于现行标准规定能量的大量鸟撞事故中,航空结构仍然发生实质性破坏的情况,说明只考虑鸟体的质量和速度不足以保证飞机安全。本文中针对弹性平板、雷达罩及机翼前缘等飞机典型结构,开展了不同姿态鸟体的鸟撞分析研究。分析结果发现,鸟体姿态对结构的抗鸟撞性能有比较显著的影响,不同的结构特点反映的响应规律也不同:对吸能结构,姿态角越大,吸收的能量越多,被保护的结构就越安全;而对承力结构,姿态角越大,高应力区域越大,结构就越危险。因此,在结构的抗鸟撞安全性评估中,除了完成特定姿态鸟体的鸟撞实验,针对危险工况还应通过数值分析评估不同鸟体姿态的结构撞击响应,进一步确保结构的抗鸟撞能力。
  • 图  1  实验中鸟体俯仰旋转

    Figure  1.  Pitch rotation of bird in bird-strike experiment

    图  2  斜撞角和姿态角

    Figure  2.  Angle of oblique impact and bird orientation

    图  3  不同俯仰姿态的鸟体撞击模型

    Figure  3.  Numerical models of bird-strike ofdifferent bird pitch angles

    图  4  鸟体撞击力

    Figure  4.  Impact force of bird-strike

    图  5  板吸收的能量

    Figure  5.  Energy absorbed by panel

    图  6  不同鸟体姿态的板的应力分布

    Figure  6.  Plate stress contour of different bird orientations

    图  7  应力监测点位置

    Figure  7.  Monitoring position of panel stress

    图  8  监测点最大应力值

    Figure  8.  Maximum stresses in monitoring positions

    图  9  雷达罩结构示意图

    Figure  9.  Structural diagram of radome

    图  10  不同姿态下计算结果与实验结果对比

    Figure  10.  Comparison of numerical and experimental results

    图  11  DM处位移

    Figure  11.  Displacement of DM

    图  12  不同姿态下雷达罩吸收的能量

    Figure  12.  Energy absorption by radome

    图  13  机翼前缘变形

    Figure  13.  Deformation of wing leading edge

    图  14  机翼前梁应变

    Figure  14.  Strain of front beam

    表  1  不同鸟体姿态在监测点应力与0°的偏差

    Table  1.   Deviation of panel stress between 0° orientation and the others

    α/(°) ηmax/% ηA/% ηB/% ηC/% ηD/% ηE/%
    22.5 -4.1 2.0 -0.6 2.6 -1.5 -1.3
    45.0 -2.5 0.8 1.0 11.7 6.1 0
    67.5 1.4 8.5 4.0 28.9 19.2 18.7
    90.0 3.6 25.5 7.3 109.7 75.8 55.0
    下载: 导出CSV

    表  2  非金属材料参数

    Table  2.   Parameters of non-metallic material

    量和单位 玻璃纤维增强材料 蜂窝材料
    ρ/(kg·m-3) 1 900 64
    E11/MPa 27 300 -
    E22/MPa 26 500 -
    E33/MPa - 71.68
    G12/MPa 4 390 -
    G13/MPa - 76.11
    G23/MPa - 35.44
    X1c/MPa 309 -
    X1t/MPa 642.9 -
    X2c/MPa 363 -
    X2t/MPa 614 -
    S12/MPa 221 -
    X3c/MPa - 3.84
    X3t/MPa - 4.32
    X13/MPa - 2.14
    X23/MPa - 2.01
    下载: 导出CSV

    表  3  金属材料参数

    Table  3.   Parameters of metallic material

    材料 ρ/(kg·m-3) E /GPa σs/MPa εf
    7050-T7451 2 820 70 448 0.095
    LY12-CZ 2 780 71 424 0.127
    2024-T351 2 780 70 310 0.089
    7075-T7351 2 800 72 395 0.086
    下载: 导出CSV
  • [1] Barber J P, Taylor H R, Wilbeck J S. Characterization of bird impacts on a rigid plate: Part 1[R]. AFFDL-TR-75-5, 1975.
    [2] Barber J P, Taylor H R, Wilbeck J S. Bird impact forces and pressures on rigid and compliant targets[R]. AFFDL-TR-77-60, 1978.
    [3] Wilbeck J S. Impact behavior of low strength projectiles[R]. AFML-TR-77-134, 1977. https://www.researchgate.net/publication/235048505_Impact_Behavior_of_Low_Strength_Projectiles
    [4] Lavoiea M A, Gakwaya A, Nejad Ensan M, et al. Bird's substitute tests results and evaluation of available numerical methods[J]. International Journal of Impact Engineering, 2009, 36(10):1276-1287. doi: 10.1016-j.ijimpeng.2009.03.009/
    [5] Hedayati R, Sadighi M, Mohammadi-Aghdam M. On the difference of pressure readings from the numerical, experimental and theoretical results in different bird strike studies[J]. Aerospace Science and Technology, 2014, 32(1):260-266. doi: 10.1016/j.ast.2013.10.008
    [6] Lavoiea M A, Gakwaya A, Ensan M N, et al. Review of existing numerical methods and validation procedure available for bird strike modeling[C]//International Conference on Computational and Experimental Engineering and Science-2007. 2007: 111-118.
    [7] Mccarthy M A, Xiao J R, Mccarthy C T, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates-Part 2: Modelling of impact with SPH bird model[J]. Applied Composite Materials, 2004, 11(5):317-340. doi: 10.1023/B:ACMA.0000037134.93410.c0
    [8] Guidaa M, Marulo F, Meo M, et al. SPH-Lagrangian study of bird impact on leading edge wing[J]. Composite Structures, 2011, 93(3):1060-1071. doi: 10.1016/j.compstruct.2010.10.001
    [9] Mccallum S C, Constantinou C. The influence of bird-shape in bird-strike analysis[C]//5th European LS-DYNA users conference. Birmingham, UK, 2005. https://www.dynalook.com/conferences/european-conf-2005/Mccallum.pdf
    [10] Meguid S A, Mao R H, Ng T Y. FE analysis of geometry effects of an artificial birdstriking an aeroengine fan blade[J]. International Journal of Impact Engineering, 2008, 35(6):487-498. doi: 10.1016/j.ijimpeng.2007.04.008
    [11] 刘军, 李玉龙, 石霄鹏, 等.鸟体本构模型参数反演Ⅱ:模型参数反演研究[J].航空学报, 2011, 32(5):812-821. http://d.old.wanfangdata.com.cn/Periodical/hkxb201105005

    Liu Jun, Li Yulong, Shi Xiaopeng, et al. Parameters inversion on bird constitutive model. Part Ⅱ: Study on model parameters inversion[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):812-821. http://d.old.wanfangdata.com.cn/Periodical/hkxb201105005
    [12] Nizampatnam L S. Investigation of equation of state models for predicting[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2008.
    [13] Sebastian H. Computational methods for bird strike simulations: A review[J]. Computers and Structures, 2011, 89(23):2093-2112. http://d.old.wanfangdata.com.cn/Periodical/fjjs201805006
    [14] Reza H, Saeed Z R. A new bird model and the effect of bird geometry in impacts from various orientation[J]. Aerospace Science and Technology, 2013, 28(1):9-20. doi: 10.1016/j.ast.2012.09.002
    [15] Federal Aviation Administration. Bird strike requirements for transport category airplanes: Proposed rules[J]. Federal Register, 2015, 80(138):42753-42756.
    [16] 陈园方, 李玉龙, 刘军, 等.典型前缘结构抗鸟撞性能改进研究[J].航空学报, 2010, 31(9):1781-1787. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009012

    Chen Yuanfang, Li Yulong, Liu Jun, et al. Study of bird strike on an improved leading edge structure[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1781-1787. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009012
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  4232
  • HTML全文浏览量:  1335
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-22
  • 修回日期:  2016-05-11
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回