Assessment on single degree of freedom modelin steel column analysis of anti-detonation
-
摘要: 为评估单自由度(SDOF)模型在结构抗爆设计中的适用性,分别采用SDOF模型和通用有限元软件ANSYS/LS-DYNA对简支钢柱承受爆炸荷载时的动力响应进行模拟;对比二者计算结果,并以有限元模拟为准,分析SDOF模型的适用范围。研究表明:可按照自由振动阶段SDOF模型位移结果的振幅大小,将其位移响应划分为有限变形阶段、临界阶段、失稳破坏阶段,有限变形阶段SDOF模型与有限元结果基本一致;截面高宽比、翼缘宽厚比对钢柱动力破坏形式有重要影响,高宽比越大、翼缘的宽厚比越小,越容易发生平面外弯扭失稳;在SDOF模型中通过假定塑性铰分布长度计算塑性阶段应变及应变率,采用随时间变化的应变率计算Cowper-Symonds本构关系中的应力放大系数是可行的。Abstract: For the evaluation of the applicability of the single degree of freedom (SDOF) model in the structural antiknock design, the dynamic response of the simply supported steel column under explosion load was simulated using both the SDOF model and the ANSYS/LS-DYNA in this paper. By the comparison of the two calculation results, the scope of application of the SDOF model was analyzed according to the finite element simulation. The results show that the displacements calculated using the SDOF model can be divided into three different phases including the finite deformation, in which the SDOF model agrees well with the DYNA simulation, the critical deformation, and the buckling failure deformation, according to the amplitude size in the free vibration. The ratio of the cross section's depth to its width and that of the flange's width to its thickness have significant effect on the dynamic failure forms of the steel column, namely the bigger the ratio of the depth to the width and the smaller the ratio of the width to the thickness, the more prone it is for the buckling to suffer out-of-plane bending and twisting. In the SDOF model, it is feasible to calculate the strain and the strain rate in the plastic deformation phase by assuming the plastic hinge distribution length and the stress-magnified coefficient in the Cowper-Symonds constitutive relation by using the time-dependent strain rate.
-
Key words:
- blast load /
- steel column /
- single degree of freedom model /
- finite element /
- strain rate
-
表 1 柱中点挠度
Table 1. Mid-span displacements
$\frac{p}{{{p_0}}}$ ymax/mm Δymax
/mmymin/mm Δymin
/mmymax/mm Δymax
/mmymin/mm Δymin
/mmymax/mm Δymax
/mmymin/mm Δymin
/mmSDOF DYNA SDOF DYNA SDOF DYNA SDOF DYNA SDOF DYNA SDOF DYNA HM150×100 HW150×150 HN200×100 0.5 11 11 0 -11 -11 0 10 11 -1 -10 -11 1 7 8 -1 -7 -8 1 1.0 22 22 0 -26 -23 -3 21 22 -1 -23 -22 -1 15 16 -1 -18 -16 -2 2.0 46 48 -2 -7 -19 12 44 46 -2 -7 -19 12 32 34 -2 -8 -18 10 3.0 82 87 -5 39 27 12 77 81 -4 33 21 12 55 58 -3 18 7 11 4.0 139 149 -10 111 108 3 127 137 -10 94 87 7 89 93 -4 56 46 10 4.5 185 * 170 * 5.0 * * * * * * 220 240 -20 214 231 -17 141 142 -1 116 103 13 5.1 * * * * * * * * * * * * 6.0 * * * * * * * * * * * * 215 * 200 * 表 2 柱中点截面边缘压应变
Table 2. Mid-span compression strains
$\frac{p}{{{p_0}}}$ εmax/10-4 Δεmax
/10-4εmin/10-4 Δεmin
/10-4εmax/10-4 Δεmax
/10-4εmin/10-4 Δεmin
/10-4εmax/10-4 Δεmax
/10-4εmin/10-4 Δεmin
/10-4SDOF DYNA SDOF DYNA SDOF DYNA SDOF DYNA SDOF DYNA SDOF DYNA HM150×100 HW150×150 HN200×100 0.5 9 13 -4 -9 -5 -4 8 12 -4 -8 -4 -4 8 12 -4 -8 -4 -4 1.0 18 22 -4 -20 -14 -6 18 21 -3 -17 -13 -4 17 21 -4 -18 -13 -5 2.0 67 69 -2 25 20 5 63 69 -6 22 19 3 50 60 -10 8 5 3 3.0 184 181 3 152 137 15 168 178 -10 134 134 0 127 147 -20 89 96 -7 4.0 374 377 -3 351 350 1 339 362 -23 313 326 -13 239 263 -24 205 216 -11 5.0 * * * * * * 655 1069 -414 650 1060 -410 406 444 -38 380 405 -25 表 3 柱中点截面最大应变率
Table 3. Mid-span maximum strain rates
$\frac{p}{{{p_0}}}$ $\dot \varepsilon $max/s-1 Δ$\dot \varepsilon $max/s-1 $\dot \varepsilon $max/s-1 Δ$\dot \varepsilon $max/s-1 $\dot \varepsilon $max/s-1 Δ$\dot \varepsilon $max/s-1 SDOF DYNA SDOF DYNA SDOF DYNA HM150×100 HW150×150 HN200×100 1.0 1.21 0.02 1.19 1.84 0.02 1.82 1.06 0.01 1.05 2.0 3.08 3.16 -0.08 2.94 3.00 -0.06 2.81 2.80 0.01 3.0 6.22 7.00 -0.78 6.11 7.23 -1.12 5.59 7.91 -2.32 4.0 8.53 9.63 -1.10 8.34 10.2 -1.86 7.57 12.00 -4.43 5.0 10.85 11.9 -1.05 10.70 12.6 -1.90 9.84 14.10 -4.26 -
[1] 中华人民共和国住房和城乡建设部.GB 50009-2012建筑结构荷载规范[S].北京: 中国建筑工业出版社, 2012. https://www.hanspub.org/reference/ReferencePapers.aspx?ReferenceID=157206 [2] Nassr A A, Razaqpur A G. Single and multi degree of freedom analysis of steel beams under blast loading[J]. Nuclear Engineering and Design, 2012, 242:63-77. doi: 10.1016/j.nucengdes.2011.10.020 [3] LS-DYNA keyword user's manual: Version 971[Z]. Livermore, California: Livermore Software Technology Corporation, 2007. [4] Nassr A A, Razaqpur A G. Strength and stability of steel beam columns under blast load[J].International Journal of Impact Engineering, 2013, 55(5):34-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=258376df12a28550b207823b7b9302fb [5] 席丰, 张云.脉冲载荷作用下钢梁动力响应及反常行为的应变率效应[J].爆炸与冲击, 2012, 32(1):34-42. doi: 10.3969/j.issn.1001-1455.2012.01.006Xi Feng, Zhang Yun. The effects of strain rate on the dynamic response and abnormal Behavior of steel beams under pulse loading[J]. Explosion and Shock Waves, 2012, 32(1):34-42. doi: 10.3969/j.issn.1001-1455.2012.01.006 [6] 刘锋, 席丰.子弹撞击作用下固支浅圆拱的弹塑性动力响应[J].爆炸与冲击, 2005, 25(4):361-367. doi: 10.3321/j.issn:1001-1455.2005.04.013Liu Feng, Xi Feng. Elastic-plastic dynamic response of a fully clamped shallow arch subjected to projectile impact[J]. Explosion and Shock Waves, 2005, 25(4):361-367. doi: 10.3321/j.issn:1001-1455.2005.04.013 [7] 谭浩强.C程序设计(第四版)[M].北京:清华大学出版社, 2010. [8] Nassr A A, Razaqpur A G. Dynamic response of steel columns subjected to blast loading[J]. Journal of Structural Engineering, 2014, 140(7):165-180. http://d.old.wanfangdata.com.cn/Periodical/bpqc201804005 [9] Nassr A A, Razaqpur A G. Experimental performance of steel beams under blast loading[J]. Journal of Performance of Constructed Facilities, 2012, 26(26):600-619. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbc670001ec88ef3091f049baebd1566 [10] 陈骥.钢结构稳定理论与设计(第六版)[M].北京:科学出版社, 2014. [11] 余同希, 斯壮W J.塑性结构的动力学模型[M].北京:北京大学出版社, 2002. [12] 陈绍蕃, 顾强.钢结构(第二版)[M].北京:中国建筑工业出版社, 2007.