• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

爆破振动诱发民房结构损伤识别的随机森林模型

方前程 商丽 商拥辉 宋译

曹祥, 汤佳妮, 王珠, 郑宇轩, 周风华. 损伤演化对韧性金属碎裂过程的影响[J]. 爆炸与冲击, 2020, 40(1): 013102. doi: 10.11883/bzycj-2019-0041
引用本文: 方前程, 商丽, 商拥辉, 宋译. 爆破振动诱发民房结构损伤识别的随机森林模型[J]. 爆炸与冲击, 2017, 37(6): 939-945. doi: 10.11883/1001-1455(2017)06-0939-07
CAO Xiang, TANG Jiani, WANG Zhu, ZHENG Yuxuan, ZHOU Fenghua. Effect of damage evolution on the fragmentation process of ductile metals[J]. Explosion And Shock Waves, 2020, 40(1): 013102. doi: 10.11883/bzycj-2019-0041
Citation: Fang Qiancheng, Shang Li, Shang Yonghui, Song Yi. Random forest model for identification of residential structure damage induced by blast vibration[J]. Explosion And Shock Waves, 2017, 37(6): 939-945. doi: 10.11883/1001-1455(2017)06-0939-07

爆破振动诱发民房结构损伤识别的随机森林模型

doi: 10.11883/1001-1455(2017)06-0939-07
基金项目: 

国家自然科学基金项目 11072072

详细信息
    作者简介:

    方前程(1982-),男,博士,fangqiancheng314@126.com

  • 中图分类号: O381

Random forest model for identification of residential structure damage induced by blast vibration

  • 摘要: 为快速、准确地评价爆破振动诱发民房结构损伤效应,借鉴随机森林理论并结合工程实际,建立露采爆破振动诱发民房结构损伤识别的随机森林模型;综合考虑爆破参数、爆破振动特征参量及房屋结构动力特性等因素,选取质点峰值振动速度、主频率、主频率持续时间、段药量、爆心距、施工质量参数、场地条件参数、屋盖形式参数、砖墙面积率、民房高度、灰缝强度和圈梁构造柱参数等12个影响因素作为模型输入,将砖混结构建筑物的损害等级作为模型输出;基于多分类器集成的思想,以108组爆破振动实测数据作为学习样本进行训练,建模过程中由多个决策树集成随机森林、用投票的方式实现对民房结构损伤有效识别;用12组现场数据验证模型的有效性;在对样本分类的同时,计算预测变量的重要性值,发现质点峰值振动速度为最重要的评价指标,其后依次为爆心距,主频率持续时间,主频率,圈梁构造柱参数,灰缝强度,屋盖形式参数,民房高度,段药量,施工质量参数,砖墙面积率和场地条件参数。研究结果表明:随机森林模型预测结果学习样本准确度是87.97%,而测试集准确度是91.67%,与实际情况吻合较好,预测精度较高。
  • 图  1  随机森林分类器

    Figure  1.  Random forest classifier

    图  2  建立民房结构损伤预测的RF模型

    Figure  2.  Establishing the RF model of residential structure damage prediction

    图  3  随机森林10折交叉确认

    Figure  3.  10-folds cross validation for RF

    图  4  用随机森林对自变量重要性进行排序

    Figure  4.  Ranking variable importance by RF

    表  1  M元分类问题混淆矩阵

    Table  1.   M-ary classification confusion matrix

    真实类别 类别预测个数
    类别1 类别2 类别3
    类别1 N11 N12 N1M
    类别2 N21 N22 N2M
    类别M NM1 NM2 NMM
    下载: 导出CSV

    表  2  状态参量数据量化建议值

    Table  2.   Recommended value for quantified input and output parameters

    判别因子 取值及其含义
    Qc 一般取8,差取6,好取10
    Sc 一般取8,差取6,好取10
    Rs 木制取3,预制板取4,现浇砼取5
    Bcf 无圈无柱取3,有圈无柱取4,有圈有柱取5
    下载: 导出CSV

    表  3  RF模型学习样本及识别结果

    Table  3.   Training samples and identification results of RF model

    序号 Qmax/kg R/m ν/Hz vppv/(cm·s-1) Δt/ms H/m K/% S/MPa Qc Sc Rs Bcf 损伤类别
    实测 RF
    X1 650 78.69 31.2 1.753 870 2.8 3.28 15 8 8 3 3 V2 V2
    X2 650 82.57 18.6 2.714 1 090 2.8 3.28 15 8 8 3 3 V3 V3
    X3 780 37.92 38.3 0.457 765 2.8 3.28 15 8 8 3 3 V1 V1
    X8 780 89.65 25.3 3.896 820 3.5 2.16 10 6 8 3 3 V3 V3
    X9 520 84.39 37.5 1.888 1 215 6.5 2.87 25 8 10 4 4 V2 V2
    X10 520 84.39 37.5 0.865 310 6.5 2.87 25 8 10 4 4 V1 V1
    X11 780 86.61 39.5 3.215 1 150 6.5 2.87 25 8 10 4 4 V3 V2
    X12 650 36.57 38.7 2.799 755 6.5 2.87 25 8 10 4 4 V2 V2
    X108 400 81.56 27.5 1.222 255 10.5 2.58 50 10 10 5 5 V1 V1
    下载: 导出CSV

    表  4  RF模型测试样本及识别结果对比

    Table  4.   RF model test samples and recognition results

    序号 Qmax/kg R/m ν/Hz vppv/(cm·s-1) Δt/ms H/m K/% S/MPa Qc Sc Rs Bcf 损伤类别
    实测 神经网络 RF
    C1 780 121.46 26.6 0.604 215 2.8 3.28 15 8 8 3 3 V1 V1 V1
    C2 900 78.25 39.7 2.979 785 2.8 3.28 15 8 8 3 3 V3 V3 V3
    C3 780 90.52 17.1 1.497 655 3.5 2.16 10 6 8 3 3 V2 V2 V2
    C4 900 51.25 16.3 4.923 385 3.5 2.16 10 6 8 3 3 V3 V3 V3
    C5 650 78.64 17.3 1.543 780 6.5 2.87 25 8 10 4 4 V1 V1 V1
    C6 900 70.36 29.3 4.193 825 6.5 2.87 25 8 10 4 4 V3 V3 V2
    C7 650 33.25 39.6 3.536 1 100 6.5 3.11 50 10 6 5 5 V2 V2 V2
    C8 650 70.38 30.9 1.697 880 6.5 3.11 50 10 6 5 5 V1 V1 V1
    C9 900 61.43 24.3 3.608 805 6.5 3.53 25 6 8 4 3 V3 V3 V3
    C10 650 72.47 23.3 1.589 850 6.5 3.53 25 6 8 4 3 V2 V2 V2
    C11 900 48.37 26.3 4.106 865 10.5 2.58 50 10 10 5 5 V2 V2 V2
    C12 650 114.81 24.6 0.783 310 10.5 2.58 50 10 10 5 5 V1 V1 V1
    下载: 导出CSV

    表  5  随机森林的混淆矩阵显示训练集分类误差

    Table  5.   Confusion matrix drawn from Random forest showing the classification error of training set

    真实类别 类别预测个数 分类误差/%
    V1 V2 V3
    V1 56 5 0 0.082 0
    V2 7 18 3 0.357 1
    V3 0 2 17 0.105 3
    下载: 导出CSV

    表  6  随机森林的混淆矩阵显示测试集分类误差

    Table  6.   Confusion matrix drawn from Random forest showing the classification error of test set

    真实类别 类别预测个数
    V1 V2 V3
    V1 4 0 0
    V2 0 4 1
    V3 0 0 3
    下载: 导出CSV
  • [1] Khandelwal M, Singh T N.Evaluation of blast-induced ground vibration predictors[J].Soil Dynamics and Earthquake Engineering, 2007, 27(2):116-125. doi: 10.1016/j.soildyn.2006.06.004
    [2] Siskind D E, Stagg M S, Kopp J W, et al. Structure response and damage produced by ground vibration from surface mine blasting[R]. USBM Report of Investigation 8507, 1980: 73-74. i
    [3] 中华人民共和国国家标准编写组. 爆破安全规程: GB6722-2014[S]. 北京: 中国标准出版社, 2015.
    [4] 史秀志, 周健, 崔松, 等.露天采矿爆破振动对民房危害预测的DDA模型及应用[J].中南大学学报(自然科学版), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027

    Shi Xiuzhi, Zhou Jian, Cui Song, et al.Distance discriminant analysis model and its application for prediction residential house's damage against blasting vibration of open pit mining[J].Journal of Central South University (Science and Technology), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027
    [5] 史秀志, 周健, 杜坤, 等.爆破振动对民房破坏效应预测的BDA模型及应用[J].振动与冲击, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013

    Shi Xiuzhi, Zhou Jian, Du Kun, et al.BDA model for predicting destructive effect of blast vibration on housing[J].Journal of Vibration and Shock, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013
    [6] 中国生, 徐国元, 熊正明.基于小波变换的爆破地震信号能量分析法的应用研究[J].爆炸与冲击, 2006, 26(3):222-227. doi: 10.3321/j.issn:1001-1455.2006.03.005

    Zhong Guosheng, Xu Guoyuan, Xiong Zhengming.Application research of the energy analysis method for blasting seismic signals based on wavelet transform[J].Explosion and Shock Waves, 2006, 26(3):222-227. doi: 10.3321/j.issn:1001-1455.2006.03.005
    [7] 史秀志, 周健, 崔松, 等.露天采矿爆破振动对民房危害预测的DDA模型及应用[J].中南大学学报(自然科学版), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027

    Shi Xiuzhi, Zhou Jian, Cui Song, et al.Distance discriminant analysis model and its application for prediction residential house's damage against blasting vibration of open pit mining[J].Journal of Central South University (Science and Technology), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027
    [8] 史秀志, 周健, 杜坤, 等.爆破振动对民房破坏效应预测的BDA模型及应用[J].振动与冲击, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013

    Shi Xiuzhi, Zhou Jian, Du Kun, et al.BDA model for predicting destructive effect of blast vibration on housing[J].Journal of Vibration and Shock, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013
    [9] 董陇军, 李夕兵, 赵国彦, 等.露天采矿爆破振动对砌体结构破坏效应预测的Fisher判别模型及应用[J].岩石力学与工程学报, 2009, 28(4):750-756. doi: 10.3321/j.issn:1000-6915.2009.04.013

    Dong Longjun, Li Xibing, Zhao Guoyan, et al.Fisher discriminant analysis model and its application to predicting destructive effect of masonry structure under blasting vibration of open-pit mine[J].Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4):750-756. doi: 10.3321/j.issn:1000-6915.2009.04.013
    [10] Zhou J, Shi X, Li X.Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining[J].Journal of Vibration and Control, 2015, 22(19).DOI: 10.1177/1077546314568172.
    [11] 史秀志. 爆破振动信号时频分析与爆破振动预测研究[D]. 长沙: 中南大学, 2007.
    [12] Melih I, Mahmut Y, Hakan A.Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system[J].Environmental Geology, 2008, 56(11):97-107. doi: 10.1007/s00254-007-1143-6
    [13] Shi X Z, Zhou J.Prediction residential house's damage effect near openpit against blasting vibration based on svm with grid searching method/genetic algorithm[J].Advanced Science Letters, 2012, 11(1):238-243. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66b331ff4b09ecb8641a35da2efeceeb
    [14] Breiman L.Random forests[J].Machine Learning, 2001, 45:5-32. doi: 10.1023/A:1010933404324
    [15] 方匡南, 吴见彬, 朱建平等.随机森林方法研究综述[J].统计与信息论坛, 2011, 26(3):32-38. doi: 10.3969/j.issn.1007-3116.2011.03.006

    Fang Kuangnan, Wu Jianbin, Zhu Jianping, et al.A review of technologies on random forests[J].Statistics & Information Forum, 2011, 26(3):32-38. doi: 10.3969/j.issn.1007-3116.2011.03.006
    [16] 秦锋, 杨波, 程泽凯.分类器性能评价标准研究[J].计算机技术与发展, 2006, 16(10):85-88. doi: 10.3969/j.issn.1673-629X.2006.10.029

    Qin Feng, Yang Bo, Chen Zekai.Research on measure criteria in evaluating classification performance[J].Computer Technology and Development, 2006, 16(10):85-88. doi: 10.3969/j.issn.1673-629X.2006.10.029
    [17] Congalton R G.A review of assessing the accuracy of classifications of remotely sensed data[J].Working Pages, 1991, 119(2):270-279. http://www.sciencedirect.com/science/article/pii/003442579190048B
    [18] Landis J, Koch G.The measurement of observer agreement for categorical data[J].Biometrics, 1977, 33(1):159-174. doi: 10.2307/2529310
  • 加载中
推荐阅读
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
含煤基固废漂珠低爆速乳化炸药的爆炸特性和热安全性
韦箫 等, 爆炸与冲击, 2025
钢纤维增强多孔混凝土板水下接触爆炸防爆机理及损伤等级预测
汤长兴 等, 爆炸与冲击, 2025
海拔高度对长直坑道内爆炸冲击波传播的影响
李勇 等, 爆炸与冲击, 2024
乳化炸药水下爆炸载荷输出特性实验研究
郑欣颖 等, 高压物理学报, 2022
弧形坑道和弧形扩散坑道内冲击波的传播规律
程浩 等, 高压物理学报, 2025
基于有效冲量的水下爆炸冲击波对平板结构的毁伤准则
毛致远 等, 高压物理学报, 2023
Bienzyme-locked activatable fluorescent probes for specific imaging of tumor-associated mast cells
Hu, Yuxuan et al., JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024
Study on the minimum safe thickness of water inrush prevention in karst tunnel under the coupling effect of blasting power and water pressure
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024
Study on internal rise law of fracture water pressure and progressive fracture mechanism of rock mass under blasting mpact
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY
Powered by
图(4) / 表(6)
计量
  • 文章访问数:  4351
  • HTML全文浏览量:  1521
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-07
  • 修回日期:  2016-04-22
  • 刊出日期:  2017-11-25

目录

    /

    返回文章
    返回