爆破振动诱发民房结构损伤识别的随机森林模型

方前程 商丽 商拥辉 宋译

方前程, 商丽, 商拥辉, 宋译. 爆破振动诱发民房结构损伤识别的随机森林模型[J]. 爆炸与冲击, 2017, 37(6): 939-945. doi: 10.11883/1001-1455(2017)06-0939-07
引用本文: 方前程, 商丽, 商拥辉, 宋译. 爆破振动诱发民房结构损伤识别的随机森林模型[J]. 爆炸与冲击, 2017, 37(6): 939-945. doi: 10.11883/1001-1455(2017)06-0939-07
Fang Qiancheng, Shang Li, Shang Yonghui, Song Yi. Random forest model for identification of residential structure damage induced by blast vibration[J]. Explosion And Shock Waves, 2017, 37(6): 939-945. doi: 10.11883/1001-1455(2017)06-0939-07
Citation: Fang Qiancheng, Shang Li, Shang Yonghui, Song Yi. Random forest model for identification of residential structure damage induced by blast vibration[J]. Explosion And Shock Waves, 2017, 37(6): 939-945. doi: 10.11883/1001-1455(2017)06-0939-07

爆破振动诱发民房结构损伤识别的随机森林模型

doi: 10.11883/1001-1455(2017)06-0939-07
基金项目: 

国家自然科学基金项目 11072072

详细信息
    作者简介:

    方前程(1982-),男,博士,fangqiancheng314@126.com

  • 中图分类号: O381

Random forest model for identification of residential structure damage induced by blast vibration

  • 摘要: 为快速、准确地评价爆破振动诱发民房结构损伤效应,借鉴随机森林理论并结合工程实际,建立露采爆破振动诱发民房结构损伤识别的随机森林模型;综合考虑爆破参数、爆破振动特征参量及房屋结构动力特性等因素,选取质点峰值振动速度、主频率、主频率持续时间、段药量、爆心距、施工质量参数、场地条件参数、屋盖形式参数、砖墙面积率、民房高度、灰缝强度和圈梁构造柱参数等12个影响因素作为模型输入,将砖混结构建筑物的损害等级作为模型输出;基于多分类器集成的思想,以108组爆破振动实测数据作为学习样本进行训练,建模过程中由多个决策树集成随机森林、用投票的方式实现对民房结构损伤有效识别;用12组现场数据验证模型的有效性;在对样本分类的同时,计算预测变量的重要性值,发现质点峰值振动速度为最重要的评价指标,其后依次为爆心距,主频率持续时间,主频率,圈梁构造柱参数,灰缝强度,屋盖形式参数,民房高度,段药量,施工质量参数,砖墙面积率和场地条件参数。研究结果表明:随机森林模型预测结果学习样本准确度是87.97%,而测试集准确度是91.67%,与实际情况吻合较好,预测精度较高。
  • 图  1  随机森林分类器

    Figure  1.  Random forest classifier

    图  2  建立民房结构损伤预测的RF模型

    Figure  2.  Establishing the RF model of residential structure damage prediction

    图  3  随机森林10折交叉确认

    Figure  3.  10-folds cross validation for RF

    图  4  用随机森林对自变量重要性进行排序

    Figure  4.  Ranking variable importance by RF

    表  1  M元分类问题混淆矩阵

    Table  1.   M-ary classification confusion matrix

    真实类别 类别预测个数
    类别1 类别2 类别3
    类别1 N11 N12 N1M
    类别2 N21 N22 N2M
    类别M NM1 NM2 NMM
    下载: 导出CSV

    表  2  状态参量数据量化建议值

    Table  2.   Recommended value for quantified input and output parameters

    判别因子 取值及其含义
    Qc 一般取8,差取6,好取10
    Sc 一般取8,差取6,好取10
    Rs 木制取3,预制板取4,现浇砼取5
    Bcf 无圈无柱取3,有圈无柱取4,有圈有柱取5
    下载: 导出CSV

    表  3  RF模型学习样本及识别结果

    Table  3.   Training samples and identification results of RF model

    序号 Qmax/kg R/m ν/Hz vppv/(cm·s-1) Δt/ms H/m K/% S/MPa Qc Sc Rs Bcf 损伤类别
    实测 RF
    X1 650 78.69 31.2 1.753 870 2.8 3.28 15 8 8 3 3 V2 V2
    X2 650 82.57 18.6 2.714 1 090 2.8 3.28 15 8 8 3 3 V3 V3
    X3 780 37.92 38.3 0.457 765 2.8 3.28 15 8 8 3 3 V1 V1
    X8 780 89.65 25.3 3.896 820 3.5 2.16 10 6 8 3 3 V3 V3
    X9 520 84.39 37.5 1.888 1 215 6.5 2.87 25 8 10 4 4 V2 V2
    X10 520 84.39 37.5 0.865 310 6.5 2.87 25 8 10 4 4 V1 V1
    X11 780 86.61 39.5 3.215 1 150 6.5 2.87 25 8 10 4 4 V3 V2
    X12 650 36.57 38.7 2.799 755 6.5 2.87 25 8 10 4 4 V2 V2
    X108 400 81.56 27.5 1.222 255 10.5 2.58 50 10 10 5 5 V1 V1
    下载: 导出CSV

    表  4  RF模型测试样本及识别结果对比

    Table  4.   RF model test samples and recognition results

    序号 Qmax/kg R/m ν/Hz vppv/(cm·s-1) Δt/ms H/m K/% S/MPa Qc Sc Rs Bcf 损伤类别
    实测 神经网络 RF
    C1 780 121.46 26.6 0.604 215 2.8 3.28 15 8 8 3 3 V1 V1 V1
    C2 900 78.25 39.7 2.979 785 2.8 3.28 15 8 8 3 3 V3 V3 V3
    C3 780 90.52 17.1 1.497 655 3.5 2.16 10 6 8 3 3 V2 V2 V2
    C4 900 51.25 16.3 4.923 385 3.5 2.16 10 6 8 3 3 V3 V3 V3
    C5 650 78.64 17.3 1.543 780 6.5 2.87 25 8 10 4 4 V1 V1 V1
    C6 900 70.36 29.3 4.193 825 6.5 2.87 25 8 10 4 4 V3 V3 V2
    C7 650 33.25 39.6 3.536 1 100 6.5 3.11 50 10 6 5 5 V2 V2 V2
    C8 650 70.38 30.9 1.697 880 6.5 3.11 50 10 6 5 5 V1 V1 V1
    C9 900 61.43 24.3 3.608 805 6.5 3.53 25 6 8 4 3 V3 V3 V3
    C10 650 72.47 23.3 1.589 850 6.5 3.53 25 6 8 4 3 V2 V2 V2
    C11 900 48.37 26.3 4.106 865 10.5 2.58 50 10 10 5 5 V2 V2 V2
    C12 650 114.81 24.6 0.783 310 10.5 2.58 50 10 10 5 5 V1 V1 V1
    下载: 导出CSV

    表  5  随机森林的混淆矩阵显示训练集分类误差

    Table  5.   Confusion matrix drawn from Random forest showing the classification error of training set

    真实类别 类别预测个数 分类误差/%
    V1 V2 V3
    V1 56 5 0 0.082 0
    V2 7 18 3 0.357 1
    V3 0 2 17 0.105 3
    下载: 导出CSV

    表  6  随机森林的混淆矩阵显示测试集分类误差

    Table  6.   Confusion matrix drawn from Random forest showing the classification error of test set

    真实类别 类别预测个数
    V1 V2 V3
    V1 4 0 0
    V2 0 4 1
    V3 0 0 3
    下载: 导出CSV
  • [1] Khandelwal M, Singh T N.Evaluation of blast-induced ground vibration predictors[J].Soil Dynamics and Earthquake Engineering, 2007, 27(2):116-125. doi: 10.1016/j.soildyn.2006.06.004
    [2] Siskind D E, Stagg M S, Kopp J W, et al. Structure response and damage produced by ground vibration from surface mine blasting[R]. USBM Report of Investigation 8507, 1980: 73-74. i
    [3] 中华人民共和国国家标准编写组. 爆破安全规程: GB6722-2014[S]. 北京: 中国标准出版社, 2015.
    [4] 史秀志, 周健, 崔松, 等.露天采矿爆破振动对民房危害预测的DDA模型及应用[J].中南大学学报(自然科学版), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027

    Shi Xiuzhi, Zhou Jian, Cui Song, et al.Distance discriminant analysis model and its application for prediction residential house's damage against blasting vibration of open pit mining[J].Journal of Central South University (Science and Technology), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027
    [5] 史秀志, 周健, 杜坤, 等.爆破振动对民房破坏效应预测的BDA模型及应用[J].振动与冲击, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013

    Shi Xiuzhi, Zhou Jian, Du Kun, et al.BDA model for predicting destructive effect of blast vibration on housing[J].Journal of Vibration and Shock, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013
    [6] 中国生, 徐国元, 熊正明.基于小波变换的爆破地震信号能量分析法的应用研究[J].爆炸与冲击, 2006, 26(3):222-227. doi: 10.3321/j.issn:1001-1455.2006.03.005

    Zhong Guosheng, Xu Guoyuan, Xiong Zhengming.Application research of the energy analysis method for blasting seismic signals based on wavelet transform[J].Explosion and Shock Waves, 2006, 26(3):222-227. doi: 10.3321/j.issn:1001-1455.2006.03.005
    [7] 史秀志, 周健, 崔松, 等.露天采矿爆破振动对民房危害预测的DDA模型及应用[J].中南大学学报(自然科学版), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027

    Shi Xiuzhi, Zhou Jian, Cui Song, et al.Distance discriminant analysis model and its application for prediction residential house's damage against blasting vibration of open pit mining[J].Journal of Central South University (Science and Technology), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027
    [8] 史秀志, 周健, 杜坤, 等.爆破振动对民房破坏效应预测的BDA模型及应用[J].振动与冲击, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013

    Shi Xiuzhi, Zhou Jian, Du Kun, et al.BDA model for predicting destructive effect of blast vibration on housing[J].Journal of Vibration and Shock, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013
    [9] 董陇军, 李夕兵, 赵国彦, 等.露天采矿爆破振动对砌体结构破坏效应预测的Fisher判别模型及应用[J].岩石力学与工程学报, 2009, 28(4):750-756. doi: 10.3321/j.issn:1000-6915.2009.04.013

    Dong Longjun, Li Xibing, Zhao Guoyan, et al.Fisher discriminant analysis model and its application to predicting destructive effect of masonry structure under blasting vibration of open-pit mine[J].Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4):750-756. doi: 10.3321/j.issn:1000-6915.2009.04.013
    [10] Zhou J, Shi X, Li X.Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining[J].Journal of Vibration and Control, 2015, 22(19).DOI: 10.1177/1077546314568172.
    [11] 史秀志. 爆破振动信号时频分析与爆破振动预测研究[D]. 长沙: 中南大学, 2007.
    [12] Melih I, Mahmut Y, Hakan A.Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system[J].Environmental Geology, 2008, 56(11):97-107. doi: 10.1007/s00254-007-1143-6
    [13] Shi X Z, Zhou J.Prediction residential house's damage effect near openpit against blasting vibration based on svm with grid searching method/genetic algorithm[J].Advanced Science Letters, 2012, 11(1):238-243. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66b331ff4b09ecb8641a35da2efeceeb
    [14] Breiman L.Random forests[J].Machine Learning, 2001, 45:5-32. doi: 10.1023/A:1010933404324
    [15] 方匡南, 吴见彬, 朱建平等.随机森林方法研究综述[J].统计与信息论坛, 2011, 26(3):32-38. doi: 10.3969/j.issn.1007-3116.2011.03.006

    Fang Kuangnan, Wu Jianbin, Zhu Jianping, et al.A review of technologies on random forests[J].Statistics & Information Forum, 2011, 26(3):32-38. doi: 10.3969/j.issn.1007-3116.2011.03.006
    [16] 秦锋, 杨波, 程泽凯.分类器性能评价标准研究[J].计算机技术与发展, 2006, 16(10):85-88. doi: 10.3969/j.issn.1673-629X.2006.10.029

    Qin Feng, Yang Bo, Chen Zekai.Research on measure criteria in evaluating classification performance[J].Computer Technology and Development, 2006, 16(10):85-88. doi: 10.3969/j.issn.1673-629X.2006.10.029
    [17] Congalton R G.A review of assessing the accuracy of classifications of remotely sensed data[J].Working Pages, 1991, 119(2):270-279. http://www.sciencedirect.com/science/article/pii/003442579190048B
    [18] Landis J, Koch G.The measurement of observer agreement for categorical data[J].Biometrics, 1977, 33(1):159-174. doi: 10.2307/2529310
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  4270
  • HTML全文浏览量:  1486
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-07
  • 修回日期:  2016-04-22
  • 刊出日期:  2017-11-25

目录

    /

    返回文章
    返回