约束层对金属柱壳膨胀变形影响的数值模拟

任国武 温上捷 张茹 郭昭亮 汤铁钢

任国武, 温上捷, 张茹, 郭昭亮, 汤铁钢. 约束层对金属柱壳膨胀变形影响的数值模拟[J]. 爆炸与冲击, 2017, 37(6): 946-951. doi: 10.11883/1001-1455(2017)06-0946-06
引用本文: 任国武, 温上捷, 张茹, 郭昭亮, 汤铁钢. 约束层对金属柱壳膨胀变形影响的数值模拟[J]. 爆炸与冲击, 2017, 37(6): 946-951. doi: 10.11883/1001-1455(2017)06-0946-06
Ren Guowu, Wen Shangjie, Zhang Ru, Guo Zhaoliang, Tang Tiegang. Numerical simulation of influence of constrained layer on expanding deformation of metal cylindrical shell[J]. Explosion And Shock Waves, 2017, 37(6): 946-951. doi: 10.11883/1001-1455(2017)06-0946-06
Citation: Ren Guowu, Wen Shangjie, Zhang Ru, Guo Zhaoliang, Tang Tiegang. Numerical simulation of influence of constrained layer on expanding deformation of metal cylindrical shell[J]. Explosion And Shock Waves, 2017, 37(6): 946-951. doi: 10.11883/1001-1455(2017)06-0946-06

约束层对金属柱壳膨胀变形影响的数值模拟

doi: 10.11883/1001-1455(2017)06-0946-06
详细信息
    作者简介:

    任国武(1981—),男,博士,副研究员

    通讯作者:

    郭昭亮, glogos@caep.cn

  • 中图分类号: O347.3

Numerical simulation of influence of constrained layer on expanding deformation of metal cylindrical shell

  • 摘要: 对金属铝和硬质聚氨酯泡沫组合的约束层对45钢柱壳膨胀断裂性能的影响进行了数值模拟,得到三种约束条件下45钢柱壳在膨胀过程中表面的速度和位移历史剖面,对比分析了在约束层作用下45钢柱壳膨胀变形动态行为。利用高速分幅相机及中能X光机获得了多个时刻45钢柱壳的动态图像和柱壳膨胀后的工程应变,实验结果与数值模拟结果吻合。结果可对爆轰加载下约束层对45钢柱壳膨胀变形的物理规律进行定量认识。
  • 图  1  约束柱壳模型示意图

    Figure  1.  Schematic of constrained cylinder model

    图  2  三种状态条件下不同时刻的柱壳膨胀过程

    Figure  2.  Expansion of cylindrical shell at different moments

    图  3  图 2(h)(l)的局部放大图

    Figure  3.  Magnified image of Fig. 2(h) and (l)

    图  4  三种状态下45钢柱壳的速度及位移历史剖面

    Figure  4.  Velocity and displacement profiles of 45 steel cylindrical shell

    图  5  C1及C2状态下铝柱壳的速度及位移历史剖面

    Figure  5.  Velocity and displacement profiles of LY12 Al cylindrical shell

    图  6  不同约束条件下实验与数值模拟比较(t=19.0 μs)

    Figure  6.  Comparison of deformation between experiments and simulations at t=19.0 μs

    图  7  不同约束条件下实验与数值模拟比较(t=24.0 μs)

    Figure  7.  Comparison of deformation between experiments and simulations at t=24.0 μs

  • [1] Gurnery R W.The initial velocity of fragment from bombs, shells and grenades[R].Army Ballistic Research Laboratory Report No.405, 1943.
    [2] Taylor G I.Analysis of the explosion of a long cylindrical bomb detonated at one end[M].Scientific Papers of G.I.Taylor, vol.Ⅲ.Cambridge: Cambridge University Press, 1963: 277-286.
    [3] Hoggatt R H, Recht R F.Fracture behavior of tubular bombs[J].Journal of Applied Physics, 1968, 93(3):1856-1862. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5093397&contentType=Journals+%26+Magazines&sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number%3A5093320)%26pageNumber%3D4
    [4] Al-Hassani S T S, Johnson W.The dynamics of the fragmentation process for spherical shells containing explosives[J].International Journal of Mechanical Sciences, 1969, 11(10):811. doi: 10.1016/0020-7403(69)90034-4
    [5] Grady D E.Fragmentation of rings and shells:the Legacy of N.F.Mott[M].New York:Springer, 2006.
    [6] Grady D E, Olsen M L.A statistics and energy based theory of dynamic fragmentation[J].International Journal of Impact Engineering, 2003, 29(10):293-306. http://www.sciencedirect.com/science/article/pii/S0734743X03001325
    [7] Ivanov A G.Dynamic rupture of thin-walled cylindrical shells[J].Journal de Physique Ⅳ, 1991(C3):759-768. http://cn.bing.com/academic/profile?id=7165d9daa49b010d77104d3c893cbeec&encoded=0&v=paper_preview&mkt=zh-cn
    [8] Goto D M, Becker R, Orzechowski T J, et al.Investigation of the fracture and fragmenation of explosively driven rings and cylinders[J].International Journal of Impact Engineering, 2008, 35(12):1547-1556. doi: 10.1016/j.ijimpeng.2008.07.081
    [9] Zhang H, Ravi-Chandar K.On the dynamics of localization and fragmentation-Ⅳ:expansion of Al 6061-O tubes[J].International Journal of Fracture, 2010, 163(1/2):41-65. doi: 10.1007/s10704-009-9441-5
    [10] Bolis C, Counilh D, Lagrange J M, et al.Fragmentation of a titanium alloy shell in expansion:from experiments to simulation[J].Procedia Engineering, 2013, 58:672-677. doi: 10.1016/j.proeng.2013.05.077
    [11] 汤铁钢, 谷岩, 李庆忠, 等.爆轰加载下金属柱壳膨胀破裂过程研究[J].爆炸与冲击, 2003, 23(6):529-533. doi: 10.3321/j.issn:1001-1455.2003.06.008

    Tang Tiegang, Gu Yan, Li Qingzhong, et al.Expanding fracture of steel cylinder shell by detonation driving[J].Explosion and Shock Waves, 2003, 23(6):529-533. doi: 10.3321/j.issn:1001-1455.2003.06.008
    [12] 陈马旭, 乐贵高.带泡沫缓冲的导弹跌落仿真[J].兵工自动化, 2014, 33(3):34-36. http://d.old.wanfangdata.com.cn/Periodical/bgzdh201403011

    Chen Maxu, Le Guigao.Simulation of missile drop with foam cushions[J].Ordnance Industry Automation, 2014, 33(3):34-36. http://d.old.wanfangdata.com.cn/Periodical/bgzdh201403011
    [13] 任国武, 郭昭亮, 张世文, 等.金属柱壳膨胀断裂的实验与数值模拟[J].爆炸与冲击, 2015, 35(6):895-900. http://www.bzycj.cn/CN/abstract/abstract9550.shtml

    Ren Guowu, Guo Zhaoliang, Zhang Shiwen, et al.Experiment and numerical simulation on expansion deformation and fracture of cylindrical shell[J].Explosion and Shock Waves, 2015, 35(6):895-900. http://www.bzycj.cn/CN/abstract/abstract9550.shtml
    [14] Dattelbaum D M, Robbins D L, Gustavsen R L, et al.Shock compression of polyurethane foams[J].EPJ Web of Conferences, 2012, 26:02014. doi: 10.1051/epjconf/20122602014
  • 加载中
图(7)
计量
  • 文章访问数:  4037
  • HTML全文浏览量:  1281
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-27
  • 修回日期:  2017-01-22
  • 刊出日期:  2017-11-25

目录

    /

    返回文章
    返回