Residual characteristics of moderately thick water-backed steel plates penetrated by high-velocity fragments
-
摘要: 为探讨破片高速侵彻中厚背水钢板的剩余特性,通过弹道实验,分析了弹体和靶板的破坏模式,比较了破片侵彻垂直和倾斜背水钢板后的瞬时余速和运动轨迹, 以及由此引起的初始冲击波的压力特性。结果表明,破片在高速侵彻下,头部产生了严重的镦粗变形,钢板背后水介质的动支撑作用不容忽视;背水钢板的破坏模式主要为剪切冲塞破坏,背弹面穿孔存在绝热剪切效应;破片穿透背水钢板初期,会产生空泡和射流,空泡大小和射流强度与破片入水初速有关,而空泡形状和射流方向则受背水钢板的倾斜角度影响;破片穿透背水钢板后,在水中的运动轨迹会发生偏转,偏转方向与破片入水初速有关;由于水介质的动支撑作用和动能耗散效应,破片穿透背水钢板后的动能损失要大于穿透背空钢板的情形;水中初始冲击波的压力特性应考虑稀疏波的影响;相同初速下,破片侵彻垂直背水钢板引起的初始冲击波的峰值压力较侵彻倾斜背水钢板要大。Abstract: In this study we carried out ballistic tests to explore the residual characteristics of moderately thick water-backed steel plates penetrated by high-velocity fragments. Damage modes of projectiles as well as targets were analyzed. We compared the vertical and inclined water-backed steel plates penetrated by fragments in terms of instantaneous fragment velocities, moving trajectories and the pressure characteristics of induced incipient shockwaves. The results show that serious mushrooming deformation occur on the noses of the fragments during high-velocity penetration, and the dynamic supporting effect of water in the back of the steel plate should be considered in its examination. Damage modes of the water backed steel plates are mainly shear plugging, together with adiabatic shear effect available on the distal side of the perforation holes. In the earlier stage after the fragment perforating the water-backed steel plates, cavities and jets are produced. The cavity size and the jet intensity are both related to the initial velocities of the fragments entering the water, whereas both the cavity shape and the jet direction are affected by the inclined angle of the water-backed steel plates. After the perforation of the water-backed steelplates, the moving trajectories of the fragments will deflect, and the deflection direction is related to the initial velocities. Due to the dynamic supporting as well as the kinetic energy dissipation effects of water, the kinetic energy loss of the fragment perforating water-backed steel plates is greater than that perforating air-backed steel plates. The influence of the rarefaction wave on the pressure characteristics of incipient shock waves should be considered. Under the condition of the same initial fragment velocity, penetration of the vertical water-backed steel plates result in incipient shock waves with higher peak pressures than those resulting from the penetration of the inclined water-backed steel plates.
-
表 1 实验结果及主要参数
Table 1. Experimental results and main parameters
工况 靶板厚度/mm 靶后介质 入射角/(°) 破片初速/(m·s-1) 破片余速/(m·s-1) 破坏情况 1 4.98 水(水箱Ⅰ) 90 1 105.0 229.3 穿透 2 4.96 水(水箱Ⅰ) 90 1 231.2 347.1 穿透 3 4.98 水(水箱Ⅱ) 60 1 058.1 167.8 穿透 4 4.94 水(水箱Ⅱ) 60 1 290.3 310.5 穿透 5 4.92 空气 90 1 029.0 384.0 穿透 6 4.96 空气 60 1 029.9 224.1 穿透 表 2 破片侵彻背水钢板各工况测点1~2的峰值压力测量结果
Table 2. Measured peak pressures of test points 1 and 2 for cases of water-bakced steel plates penetrated by fragments
工况 破片初速v0/(m·s-1) 入射角/(°) 破片余速vr1/(m·s-1) 峰值压力P1max/MPa 峰值压力P2max/MPa 1 1 105.0 90 286.0 6.184 4.580 2 1 231.2 90 462.7 7.707 6.132 3 1 058.1 60 202.9 4.322 3.894 4 1 290.3 60 385.9 6.432 5.563 -
[1] McMillen J H, Harvey E N.A spark shadowgraphic study of body waves in water[J].Journal of Applied Physics, 1946, 17(7):541-555. doi: 10.1063/1.1707751 [2] Townsend D, Park N, Devall P M.Failure of fluid filled structures due to high velocity fragment impact[J].International Journal of Impact Engineering, 2003, 29(1-10):723-733. doi: 10.1016/j.ijimpeng.2003.10.019 [3] Disimile P J, Swanson L A, Toy N.The hydrodynamic ram pressure generated by spherical projectiles[J].International Journal of Impact Engineering, 2009, 36(6):821-829. doi: 10.1016/j.ijimpeng.2008.12.009 [4] Varas D, Lopez-Puente J, Zaera R.Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J].International Journal of Impact Engineering, 2009, 36(1):81-91. doi: 10.1016/j.ijimpeng.2008.04.006 [5] Deletombe E, Fabis J, Dupas J, et al.Experimental analysis of 7.62 mm hydrodynamic ram in containers[J].Journal of Fluids and Structures, 2013, 37(2):1-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e00c764bc94ce20f638d9e7ceb94611e [6] 沈晓乐, 朱锡, 侯海量, 等.高速破片侵彻防护液舱试验研究[J].中国舰船研究, 2011, 6(3):12-15. doi: 10.3969/j.issn.1673-3185.2011.03.003Shen Xiaole, Zhu Xi, Hou Hailiang, et al.Experimental study on penetration properties of high velocity fragment into safety liquid cabin[J].Chinese Journal of Ship Research, 2011, 6(3):12-15. doi: 10.3969/j.issn.1673-3185.2011.03.003 [7] 徐双喜, 吴卫国, 李晓彬, 等.舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J].爆炸与冲击, 2010, 30(4):395-400. http://www.bzycj.cn/CN/abstract/abstract8801.shtmlXu Shuangxi, Wu Weiguo, Li Xiaobin, et al.Protective effect of guarding fluid cabin bulkhead under attacking by explosion fragments[J].Explosion and Shock Waves, 2010, 30(4):395-400. http://www.bzycj.cn/CN/abstract/abstract8801.shtml [8] 李典, 朱锡, 侯海量, 等.高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J].爆炸与冲击, 2016, 36(1):1-8. http://www.bzycj.cn/CN/abstract/abstract9554.shtmlLi Dian, Zhu Xi, Hou Hailiang, et al.Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration[J].Explosion and Shock Waves, 2016, 36(1):1-8. http://www.bzycj.cn/CN/abstract/abstract9554.shtml [9] 王晓强, 朱锡.高速钝头弹侵彻中厚金属靶板的机理研究[J].工程力学, 2010, 27(12):213-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017121300001763Wang Xiaoqiang, Zhu Xi.Study on high-velocity blunt-nosed projectiles penetrating moderate thickness metallic targets[J].Engineering Mechanics, 2010, 27(12):213-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017121300001763 [10] 顾建农, 张志宏, 郑学龄, 等.弹体入水弹道研究综述[J].海军工程大学学报, 2000, 12(1):18-23. doi: 10.3969/j.issn.1009-3486.2000.01.004Gu Jiannong, Zhang Zhihong, Zheng Xueling, et al.A review of the body's water-entry ballistic research[J].Journal of Naval University of Engineering, 2000, 12(1):18-23. doi: 10.3969/j.issn.1009-3486.2000.01.004 [11] 王礼立.应力波基础[M].北京:国防工业出版社, 2010. [12] Dear J P, Field J E.High-speed photography of surface geometry effects in liquid/solid impact[J].Journal of Applied Physics, 1988, 63(4):1015-1021. doi: 10.1063/1.340000