Protective performance and dynamic response analysis of explosion testing pool
-
摘要: 针对爆炸实验水池强度设计问题,利用非线性动力学程序LS-DYNA对10 kg TNT爆炸后的水中冲击波传播规律及爆炸水池结构动态响应情况进行了数值模拟, 对空气桶和气泡帷幕削弱水中冲击波的能力进行了定量计算,结果表明:空气桶对冲击波峰值压力削弱作用接近50%,对比冲量削弱作用达到16.2%;气泡帷幕对壁面反射冲击波的削弱作用高达86.2%,对比冲量削弱作用达到75.6%。在此基础上进一步分析了冲击载荷作用以及结构响应机理,指出了内衬钢板和混凝土围堰的危险区域,对爆炸能量在各物质间的分配和传递规律进行了初步探索,为相关爆炸水池的工程设计提供参考。Abstract: In this work, in view of the design issues concerning the strength of the explosion testing pool, we simulated numerically the shock wave propagation in water and structural dynamic responses of the testing pool subjected to a 10 kg TNT explosion impact loading using the nonlinear dynamics program LS-DYNA. We also quantitatively calculated the capability of the air tank and the bubble curtain to weaken the shock wave in water. The results show that the weakening effect of the air tank on the shock wave peak pressure and the specific impulse is close to 50% and 16.2%, that of the bubble curtain on the shock wave reflection and the specific impulse is as high as 86.2% and 75.6%. Based on this, we further analyzed the mechanism of the impact loading and the structural response and carried out a preliminary investigation of the distribution and transmission of the explosion energy between each substance. Our work can be used as reference for the engineering design of similar explosion testing pools.
-
Key words:
- explosion testing pool /
- stress and strain response /
- protective performance /
- LS-DYNA
-
表 1 TNT炸药材料参数
Table 1. Material parameters of TNT explosive
ρ/(g·cm-3) D0/(km·s-1) PCJ/GPa A/GPa B/GPa R1 R2 ω E0/MJ 1.63 6.93 27 371 7.43 4.15 0.95 0.3 0.007 表 2 内衬钢板材料参数
Table 2. Material parameters of steel inner-lined plate
ρ/(g·cm-3) E/GPa λ σs/GPa Et/GPa C P β 7 850 206 0.3 0.337 9.4 40.4 5 1 表 3 混凝土材料参数
Table 3. Material parameters of concrete
ρ/(g·cm-3) E/GPa λ σs/GPa Et/GPa C P β 2 400 30 0.18 0.035 12.7 0 0 0.8 表 4 土壤压力与体应变关系
Table 4. Relation between pressure and volumetric strain
体应变 0.0 0.05 0.09 0.15 0.19 0.21 0.22 0.25 压力/MPa 0.0 0.34 0.45 1.27 2.08 2.71 3.92 5.66 表 5 水的状态参数
Table 5. State parameters of water
ρ/(g·cm-3) c/(m·s-1) S1 S2 S3 γ0 α E0/MJ 1 020 1 650 1.92 -1.98 0.22 0.5 0 0 表 6 水中冲击波峰值压力计算值与理论值对比
Table 6. Contrast of numerical calculation and empirical formulas
距离/m 峰值压力/MPa 计算与理论值的相对误差/% P. Cole理论计算值 数值计算结果平均值 2.0 57.97 64.1 10.6 2.5 45.05 47.0 4.3 3.0 36.66 37.4 2.0 3.5 30.80 29.8 -3.2 4.0 26.49 25.3 -4.5 4.5 23.19 21.6 -6.8 5.0 20.59 31.2* 注:由于池壁位置入射压力峰值被反射压力峰值覆盖,因此此值仅为反射压力峰值。 表 7 空气桶和气泡帷幕对钢板内衬典型位置应力峰值的影响
Table 7. Effect of air tank and bubble curtain on effective stress in typical positions of steel lining
典型位置 应力峰值/MPa 衰减率/% 模型Ⅰ 模型Ⅱ 模型Ⅲ 模型Ⅳ 模型Ⅱ 模型Ⅲ 模型Ⅳ A 328.1 231.5 53.5 24.2 29.4 83.6 92.6 B 76.9 44.9 31.7 25.2 43.9 58.8 67.2 C 201.5 108.2 132.0 83.1 46.3 34.5 58.8 -
[1] 马俊海, 施力琳.美军常规武器试验靶场手册[M].北京:国防工业出版社, 2014. [2] 王益森, 刘徽伯.弹药试验鉴定技术[M].北京:国防工业出版社, 2001. [3] Saito T, Marumoto M, Yamashita H. Experimental and numerical studies of underwater shock wave attenuation[J].Shock Waves, 2003, 13(2):139-148. doi: 10.1007/s00193-003-0201-6 [4] Kira A, Fujita M, Itoh S. Underwater explosion of spherical explosive[J]. Journal of Materials Processing Technology, 1999, 85(1):64-71. https://www.sciencedirect.com/science/article/pii/S092401369800257X [5] 樊自建, 沈兆武, 马宏昊, 等.空气隔层对水中冲击波衰减效果的实验研究[J].中国科技大学学报, 2007, 37(10):1306-1311. http://d.old.wanfangdata.com.cn/Periodical/zgkxjsdxxb200710025Fan Zijian, Shen Zhaowu, Ma Honghao, et al. Experimental study on attenuation of underwater shock wave by air interlayer[J]. Journal of University of Science and Technology of China, 2007, 37(10):1306-1311. http://d.old.wanfangdata.com.cn/Periodical/zgkxjsdxxb200710025 [6] 周睿, 冯顺山.气泡帷幕对水中冲击波峰值压力衰减特征的研究[J].工程爆破, 2001, 7(2):13-17. doi: 10.3969/j.issn.1006-7051.2001.02.004Zhou Rui, Feng Shunshan. Study on weaking peck pressure of underwater shock wave by bubble curtain[J]. Engineer Blasting, 2001, 7(2):13-17. doi: 10.3969/j.issn.1006-7051.2001.02.004 [7] 张志波, 李春军, 李红勇, 等.气泡帷幕在水下爆破减震工程中的应用[J].爆破, 2003, 20(2):75-76. doi: 10.3963/j.issn.1001-487X.2003.02.028Zhang Zhibo, Li Chunjun, Li Hongyong, et al. Application of air bubble purdah in the damping measure in the underwater blasting[J]. Blasting, 2003, 20(2):75-76. doi: 10.3963/j.issn.1001-487X.2003.02.028 [8] 顾文彬, 胡亚峰, 徐浩铭, 等.复合结构防爆罐抗爆特性的数值模拟[J].含能材料, 2014, 22(3):325-331. doi: 10.3969/j.issn.1006-9941.2014.03.010Gu Wenbin, Hu Yafeng, Xu Haoming, et al. Numerical simulation of blast resistant characteristics for the composite structure anti-explosion container[J]. Chinese Journal of Energetic Materials, 2014, 22(3):325-331. doi: 10.3969/j.issn.1006-9941.2014.03.010 [9] 张秀华, 张春巍, 段忠东.爆炸荷载作用下钢框架柱冲击响应与破坏模式的数值模拟研究[J].沈阳建筑大学学报(自然科学版), 2009, 25(4):656-661. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200904009.htmZhang Xiuhua, Zhang Chunwei, Duan Zhongdong, et al. Numerical simulation on impact responses and failure modes of steel frame structural columns subject to blast loads[J]. Journal of Shenyang Jianzhu University (Natural Science), 2009, 25(4):656-661. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200904009.htm [10] 时党勇, 李裕春, 张国民.基于ANSYS/LS-DYNA8.1进行显示动力分析[M].北京:清华大学出版社, 2002. [11] LSTC. LS-DYNA keyword user's manual[R]. California: Livermore Software Technology Corporation, 2003. [12] P.库尔.水下爆炸[M].北京:国防工业出版社, 1960. [13] 黄芬.压力动态标准方法研究[D].南京: 南京理工大学, 2003. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y624741 [14] 伍俊, 庄铁栓, 闰鹏, 等.水中爆炸实验装置结构设计与防护研究[J].振动与冲击, 2013, 32(11):131-136. doi: 10.3969/j.issn.1000-3835.2013.11.026Wu Jun, Zhuang Tieshuan, Yan Peng, et al. Structural design of a test facility for underwater explosion and its protection measure to reduce shock wave[J]. Journal of Vibration and Shock, 2013, 32(11):131-136. doi: 10.3969/j.issn.1000-3835.2013.11.026 [15] 徐秉业, 刘信声.应用弹塑性力学[M].北京:清华大学出版社, 1995.