基于J-C模型的镁合金MB2动静态拉伸破坏行为

贾东 黄西成 胡文军 张方举

贾东, 黄西成, 胡文军, 张方举. 基于J-C模型的镁合金MB2动静态拉伸破坏行为[J]. 爆炸与冲击, 2017, 37(6): 1010-1016. doi: 10.11883/1001-1455(2017)06-1010-07
引用本文: 贾东, 黄西成, 胡文军, 张方举. 基于J-C模型的镁合金MB2动静态拉伸破坏行为[J]. 爆炸与冲击, 2017, 37(6): 1010-1016. doi: 10.11883/1001-1455(2017)06-1010-07
Jia Dong, Huang Xicheng, Hu Wenjun, Zhang Fangju. Fracture behavior of magnesium alloy MB2 under quasi-static and dynamic tension loading based on Johnson-Cook model[J]. Explosion And Shock Waves, 2017, 37(6): 1010-1016. doi: 10.11883/1001-1455(2017)06-1010-07
Citation: Jia Dong, Huang Xicheng, Hu Wenjun, Zhang Fangju. Fracture behavior of magnesium alloy MB2 under quasi-static and dynamic tension loading based on Johnson-Cook model[J]. Explosion And Shock Waves, 2017, 37(6): 1010-1016. doi: 10.11883/1001-1455(2017)06-1010-07

基于J-C模型的镁合金MB2动静态拉伸破坏行为

doi: 10.11883/1001-1455(2017)06-1010-07
基金项目: 

国家自然科学基金项目 11472257

中国工程物理研究院总体工程研究所创新与发展基金项目 13CXJ09

详细信息
    作者简介:

    贾东(1986—),男,硕士, 助理研究员, jiadong@mail.ustc.edu.cn

  • 中图分类号: O346.1

Fracture behavior of magnesium alloy MB2 under quasi-static and dynamic tension loading based on Johnson-Cook model

  • 摘要: 为了研究不同应力状态和应变率条件下镁合金MB2的拉伸破坏行为,利用材料试验机和分离式Hopkinson拉杆(SHTB),对镁合金MB2的光滑及缺口圆柱试件进行了动静态拉伸加载;拟合得到了镁合金MB2的动静态拉伸本构关系,建立了其修正的Johnson-Cook失效破坏准则,并对不同试件的拉伸破坏行为进行了数值模拟;利用SEM对宏观破坏模式对应的微观损伤机理进行了分析。结果表明,随着应力三轴度的增加,镁合金MB2的等效破坏应变先增大后减小,宏观破坏模式由剪切转为正拉断,微观损伤机制由混合断裂转变为韧窝断裂;而随着应变率的增加,等效破坏应变不断减小,破坏模式不发生改变。Johnson-Cook本构关系和修正后的Johnson-Cook失效破坏准则能较好地拟合动态静态拉伸实验结果并预测不同试件的杯锥形破坏特征。
  • 图  1  SHTB实验系统

    Figure  1.  SHTB testing system

    图  2  镁合金MB2真实应力应变曲线

    Figure  2.  True stress-strain curves of magnesium alloy MB2

    图  3  不同试件破坏模式

    Figure  3.  Macro fracture patterns of different specimens

    图  4  不同类型试件应力三轴度变化

    Figure  4.  Stress triaxiality curves of different specimens

    图  5  应变率项参数拟合曲线

    Figure  5.  Fitted curve for the item of strain rates

    图  6  镁合金MB2的破坏准则曲面

    Figure  6.  Fracture criterion surface of magnesium alloy MB2

    图  7  不同试件失效破坏模式的数值模拟结果

    Figure  7.  Fracture patterns of different specimens from numerical simulation

    图  8  试件微观断口形貌

    Figure  8.  Micro fracture morphology of specimens

    表  1  不同类型试件的等效破坏应变

    Table  1.   Equivalent fracture strain of different specimens

    入射波幅值/MPa 等效破坏应变
    光滑 R=3.0 mm R=2.0 mm R=1.5 mm R=1.0 mm
    50 未断裂 0.333 8 0.250 2 0.254 1 0.205 3
    120 0.311 7 0.307 1 0.225 7 0.239 7 0.197 7
    350 0.289 3 0.249 2 0.180 0 0.175 8 0.177 6
    下载: 导出CSV

    表  2  缺口试件的平均应变率

    Table  2.   Average strain rates of different specimens

    入射波幅值/MPa 平均应变率/s-1
    R=3 mm R=2 mm R=1.5 mm R=1 mm
    50 828 968 1 047 1 239
    120 2 315 2 573 2 569 2 694
    350 3 905 4 129 4 914 4 981
    下载: 导出CSV
  • [1] 胡昌明, 李英雷, 胡时胜, 等.高温-高应变率下MB2合金的动态力学性能及变形机理[J].兵器材料科学与工程, 2009, 32(5):8-11. doi: 10.3969/j.issn.1004-244X.2009.05.003

    Hu Changming, Li Yinglei, Hu Shisheng, et al. Dynamic mechanical properties and deformation mechanism of MB2 ally under high temperature and high strain rates[J]. Ordnance Material Science and Engineering, 2009, 32(5):8-11. doi: 10.3969/j.issn.1004-244X.2009.05.003
    [2] Zhao Feng, Li Yulong, Suo Tao, et al. Compressive deformation behavior of AZ31 magnesium alloy under quasi-static and dynamic loading[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(7):1316-1320. doi: 10.1016/S1003-6326(09)60297-1
    [3] 刘正, 董阳, 毛萍莉, 等.轧制AZ31镁合金板材(4 mm)动态压缩性能与失效行为[J].材料工程, 2015, 43(2):61-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clgc201502010

    Liu Zheng, Dong Yang, Mao Pingli, et al. Dynamic compressive properties and failure behaviour of rolled AZ31 magnesium alloy sheet (4 mm)[J]. Journal of Materials Engineering, 2015, 43(2):61-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clgc201502010
    [4] Hancock J W, Mackenzie A C. On the mechanisms of ductile failure in high strength steels subjected to multi axial stress states[J]. Journal of the Mechanics and Physics of Solids, 1976, 24(2):147-160. http://www.sciencedirect.com/science/article/pii/0022509676900247
    [5] Hopperstad O S, Børvika T, Langseth M, et al. On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part Ⅰ. Experiments[J]. European Journal of Mechanics, 2003, 22(1):1-13. http://www.sciencedirect.com/science/article/pii/S0997753802000050
    [6] Børvik T, Hopperstad O S, Berstada T. On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part Ⅱ. Numerical study[J]. European Journal of Mechanics, 2003, 22(1):15-32. http://www.sciencedirect.com/science/article/pii/S0997753802000050
    [7] Bao Y B. Dependence of ductile crack formation in tensile tests on stress triaxiality, stress and strain ratios[J]. Engineering Fracture Mechanics, 2005, 72(4):505-522. doi: 10.1016/j.engfracmech.2004.04.012
    [8] Anderson D, Winkler S, Bardelcik A, et al. Influence of stress triaxiality and strain rate on the failure behavior of a dual-phase DP780 steel[J]. Materials and Design, 2014, 60(8):198-207. http://www.sciencedirect.com/science/article/pii/S0261306914002660
    [9] 汤安民, 师俊平.几种金属材料宏观断裂形式的试验研究[J].应用力学学报, 2004, 21(3):142-144. doi: 10.3969/j.issn.1000-4939.2004.03.032

    Tang Anmin, Shi Junping. Experiment analysis of macroscopic fracture forms for several metal materials[J]. Journal of Applied Mechanics, 2004, 21(3):142-144. doi: 10.3969/j.issn.1000-4939.2004.03.032
    [10] 李智慧, 师俊平, 汤安民.金属材料脆性断裂机理的实验研究[J].应用力学学报, 2012, 29(1):48-53. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201201009

    Li Zhihui, Shi Junping, Tang Anmin. Experimental research on the brittle fracture mechnism in metal material[J]. Journal of Applied Mechanics, 2012, 29(1):48-53. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201201009
    [11] 陈刚, 陈忠富, 徐伟芳, 等.45钢的J-C损伤失效参量研究[J].爆炸与冲击, 2007, 27(2):131-135. doi: 10.3321/j.issn:1001-1455.2007.02.007

    Chen Gang, Chen Zhongfu, Xu Weifang, et al. Investigation on the J-C ductile fracture parameters of 45 steel[J]. Explosion and Shock Waves, 2007, 27(2):131-135. doi: 10.3321/j.issn:1001-1455.2007.02.007
    [12] 朱浩, 朱亮, 陈剑虹.应力三轴度和应变率对6063铝合金力学性能的影响及材料表征[J].材料科学与工程学报, 2007, 25(30):358-362. http://d.old.wanfangdata.com.cn/Periodical/clkxygc200703009

    Zhu Hao, Zhu Liang, Chen Jianhong. Influence of stress triaxiality and strain rate on the mechanics behavior of 6063 aluminum ally and material characterization[J]. Journal of Materials Science and Engineering, 2007, 25(30):358-362. http://d.old.wanfangdata.com.cn/Periodical/clkxygc200703009
    [13] 张伟, 肖新科, 魏刚.7A04铝合金的本构关系和失效模型[J].爆炸与冲击, 2011, 31(1):81-87. http://www.bzycj.cn/CN/abstract/abstract8637.shtml

    Zhang Wei, Xiao Xinke, Wei Gang. Constitutive relation and fracture model of 7A04 aluminum alloy[J]. Explosion and Shock Waves, 2011, 31(1):81-87. http://www.bzycj.cn/CN/abstract/abstract8637.shtml
    [14] Bridgman P W. Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure[M]. New York: McGraw Hill, 1952.
    [15] Feng Fei, Huang Shangyu, Meng Zhenghua, et al. A constitutive and fracture model for AZ31B magnesium alloy in the tensile state[J]. Materials Science and Engineering A, 2014, 594(4):334-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d335194d2ce47f81a6af424288a3bfd4
    [16] Alves M, Jones N. Influence of hydrostatic stress on failure of axisymmetric notched specimens[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(3):643-667. doi: 10.1016/S0022-5096(98)00060-X
    [17] Goto D M, Koss D A, Jablokov V. The influence of tensile stress states on the failure of HY-100 steel[J]. Metallurgical and Materials Transactions A, 1999, 30(11):2835-2842. doi: 10.1007/s11661-999-0121-x
    [18] Bao Y B, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1):81-98. doi: 10.1016/j.ijmecsci.2004.02.006
    [19] 贾东, 莫军, 黄西成, 等.镁合金MB2在高应力三轴度下的拉伸破坏行为研究[J].实验力学, 2016, 31(1):87-95. http://d.old.wanfangdata.com.cn/Periodical/sylx201601011

    Jia Dong, Mo Jun, Huang Xicheng, et al. On the fracture behavior of magnesium alloy MB2 subjected to high stress triaxiality stretching[J]. Journal of Experimental Mechanics, 2016, 31(1):87-95. http://d.old.wanfangdata.com.cn/Periodical/sylx201601011
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  4520
  • HTML全文浏览量:  1390
  • PDF下载量:  429
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-12
  • 修回日期:  2016-11-27
  • 刊出日期:  2017-11-25

目录

    /

    返回文章
    返回