Characteristics of frequency response for linear viscoelastic spherical divergent stress waves
-
摘要: 基于线黏弹性球面波Laplace域的理论解, 得到了不同传播距离处粒子速度、粒子位移、应力、应变等力学量的传递函数。以标准线性固体模型为例, 重点讨论了粒子速度频率响应函数的传播特征, 指出随着传播距离的增加, 粒子速度幅频响应函数的高频响应会低于低频响应, 而在理想弹性条件下, 粒子速度幅频响应函数的高频响应一直高于低频响应。以弹性半径为0.025 m的空腔爆炸为例, 采用Laplace数值逆变换方法对粒子速度波形的演化进行了分析, 给出了粒子速度强间断幅值及粒子速度峰值随传播距离变化的衰减规律曲线, 指出黏弹性介质中粒子速度幅值的衰减曲线介于理想弹性介质中粒子速度幅值衰减曲线和黏弹性介质中粒子速度强间断幅值衰减曲线之间。Abstract: In this study the transfer functions of the mechanical quantities (i.e. the particle velocity, the particle displacement, the stress and the strain, etc.) at different propagation distances were analytically presented based on the solutions of the linear viscoelastic spherical stress wave in the Laplace domain, The propagating characteristics of the frequency response function for the particle velocity were examined with the standard linear solid model taken as an example. The results reveal that the high-frequency response of the frequency response function for the particle velocity in viscoelastic medium is less than that of the low-frequency response with the increase of the propagation distance; in an ideal elastic medium, however, it is always greater than that of the low-frequency response. With the cavity explosion with the elastic radius of 0.025 m taken as an example, the evolution of the wave form of the particle velocity was calculated using the numerical method of the inverse Laplace transform. The results reveal that the attenuation curve of the peak value for the particle velocity in viscoelastic medium falls in between the attenuation curve of the the peak value for the particle velocity in an ideal elastic medium and the attenuation curve of the amplitude of the strong discontinuity for the particle velocity in viscoelastic medium.
-
Key words:
- spherical stress waves /
- frequency response /
- Laplace inversion transform
-
表 1 黄土材料标准线性固体模型参数
Table 1. Parameters of the standard linear solid model for loess
密度ρ/(kg·m3) 弹性模量E0/GPa 弹性模量E1/GPa 松弛时间θ1/μs 泊松比μ 1 800 1.60 0.33 21.0 0.25 表 2 卓越频率f0和上限频率f1的变化
Table 2. Variations of predominant frequency f0 and upper limit frequency f1
弹性半径r0/m 0.5 km处的卓越频率f0/Hz 0.5 km处的上限频率f1/Hz 1 000 km处的卓越频率f0/Hz 1 000 km处的上限频率f1/Hz 0.025 110.76 419.65 2.48 11.71 0.25 109.28 414.41 2.48 11.71 2.5 73.82 361.39 2.47 11.70 25.0 26.92 278.37 2.33 11.32 250.0 9.43 184.49 1.19 10.09 -
[1] Blake F G. Spherical wave propagation in solid media[J]. Journal of the Acoustical Society of America, 1952, 24(2):211-215. doi: 10.1121/1.1906882 [2] Selberg H L. Transient compression waves from spherical and cylindrical cavities[J]. Arkiv for Fysik, 1952, 5(1/2):97-108. http://www.ams.org/mathscinet-getitem?mr=68427 [3] Rodean H C. Elastic wave radiation from spherical sources. UCRL-52867[R]. Lawrence Livermore Laboratory, 1979. [4] Garg S K. Spherical elastic-plastic waves[J]. Journal of Applied Mathematics and Physics, 1968, 19(2):243-251. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027028260/ [5] Garg S K. Numerical solutions for spherical elastic-plastic wave propagation[J]. Journal of Applied Mathematics and Physics, 1968, 19(5):778-787. [6] 李孝兰.空腔解耦爆炸实验研究的理论基础(Ⅰ)[J].爆炸与冲击, 2000, 20(2):186-192. doi: 10.3321/j.issn:1001-1455.2000.02.016Li Xiaolan. Basic theory of decoupled explosions in cavities(Ⅰ)[J]. Explosions and Shock Waves, 2000, 20(2):186-192. doi: 10.3321/j.issn:1001-1455.2000.02.016 [7] 李孝兰.空腔解耦爆炸实验研究的理论基础(Ⅱ)[J].爆炸与冲击, 2000, 20(3):283-288. doi: 10.3321/j.issn:1001-1455.2000.03.016Li Xiaolan. Basic theory of decoupled explosions in cavities(Ⅱ)[J]. Explosions and Shock Waves, 2000, 20(3):283-288. doi: 10.3321/j.issn:1001-1455.2000.03.016 [8] 卢强, 王占江, 门朝举, 等.有机玻璃中球形应力波传播的分析[J].爆炸与冲击, 2013, 33(6):561-566. doi: 10.3969/j.issn.1001-1455.2013.06.001Lu Qiang, Wang Zhanjiang, Men Chaoju, et al. Analysis of spherical stress save propagating in PMMA[J]. Explosion and Shock Waves, 2013, 33(6):561-566. doi: 10.3969/j.issn.1001-1455.2013.06.001 [9] Perzyna P. On the propagation of stress waves in a rate sensitive plastic medium[J]. Journal of Applied Mathematics and Physics, 1963, 14(3):241-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/1545968309350595 [10] Phillips A, Zabinski M P. Spherical wave propagation in a viscoplastic medium[J]. Ingenieur Archiv, 1972, 41(6):367-376. doi: 10.1007/BF00533139 [11] Zabinski M P, Phillips A. Spherical wave propagation in a viscoplastic medium-the case of unloading[J]. Acta Mechanica, 1974, 20(3):153-166. doi: 10.1007/BF01175921 [12] Koshelev E A. Spherical stress wave propagation during an explosion in a viscoelastic medium[J]. Soviet Mining, 1988, 24(6):541-546. doi: 10.1007/BF02498612 [13] Banerjee S, Roychoudhuri S K. Spherically symmetric thermo-visco-elastic waves in a visco-elastic medium with a spherical cavity[J]. Computers & Mathematics with Applications, 1995, 30(1):91-98. http://www.sciencedirect.com/science/article/pii/089812219500070F [14] Wang L L, Lai H W, Wang Z J, et al. Studies on nonlinear visco-elastic spherical waves by characteristics analyses and its application[J]. International Journal of Impact Engineering, 2013, 55(1):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=134de230d4e5f2fc5147283cf1fdc6d5 [15] 赖华伟, 王占江, 杨黎明, 等.线性黏弹性球面波的特征线分析[J].爆炸与冲击, 2013, 33(1):1-10. doi: 10.3969/j.issn.1001-1455.2013.01.001Lai Huawei, Wang Zhanjiang, Yang Liming, et al. Characteristics analyses of linear viscoelastic spherical waves[J]. Explosion and Shock Waves, 2013, 33(1):1-10. doi: 10.3969/j.issn.1001-1455.2013.01.001 [16] 赖华伟, 王占江, 杨黎明, 等.由球面波径向质点速度实测数据反演材料黏弹性本构参数[J].高压物理学报, 2013, 27(2):245-252. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201302014.htmLai Huawei, Wang Zhanjiang, Yang Liming, et al. Inversion of constitutive parameters for viscoelastic materials from radial velocity measurements of spherical wave experiments[J]. Chinese Journal of High Pressure Physics, 2013, 27(2):245-252. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201302014.htm [17] 卢强, 王占江, 李进, 等.球面波加载下黄土线黏弹性本构关系[J].岩土力学, 2012, 33(11):3292-3298. http://d.old.wanfangdata.com.cn/Periodical/ytlx201211015Lu Qiang, Wang Zhanjiang, Li Jin, et al. Linear viscoelastic constitutive relation of loess under spherical stress wave[J]. Rock and Soil Mechanics, 2012, 33(11):3292-3298. http://d.old.wanfangdata.com.cn/Periodical/ytlx201211015 [18] 卢强, 王占江, 王礼立, 等.基于ZWT方程的线黏弹性球面波分析[J].爆炸与冲击, 2013, 33(5):463-470. doi: 10.3969/j.issn.1001-1455.2013.05.003Lu Qiang, Wang Zhanjiang, Wang Lili, et al. Analysis of linear visco-elastic spherical wave based on ZWT constitutive equation[J]. Explosion and Shock Waves, 2013, 33(5):463-470. doi: 10.3969/j.issn.1001-1455.2013.05.003 [19] 卢强, 王占江.标准线性固体材料中球面应力波传播特征研究[J].物理学报, 2015, 64(10):108301. doi: 10.7498/aps.64.108301Lu Qiang, Wang Zhanjiang. Characteristics of spherical stress wave propagation in the standard linear solid material[J]. Acta Physica Sinica, 2015, 64(10):108301. doi: 10.7498/aps.64.108301 [20] Lu Qiang, Wang Zhanjiang. Studies of the propagation of viscoelastic spherical divergent stress waves based on the generalized Maxwell model[J]. Journal of Sound and Vibration, 2016, 371(1):183-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cfb4e6191581659451b1232761f3f7a9 [21] Crump K S. Numerical inversion of Laplace transforms using a Fourier series approximation[J]. Journal of the Association for Computing Machinery, 1976, 23(1):89-96. doi: 10.1145/321921.321931 期刊类型引用(3)
1. 叶纪元,杨扬,徐绯,王逸韬,何宇廷. 基于自适应FEM-SPH耦合算法的飞机典型部位破片冲击战伤的数值研究. 爆炸与冲击. 2024(06): 134-145 . 本站查看
2. 黄雪峰,初建鹏,陈诚,詹发民. 共轭战斗部对舰艇舱室毁伤效果研究. 舰船科学技术. 2024(24): 178-185 . 百度学术
3. 娄文忠,何博,袁勇,李志鹏,山亮,冯恒振,张明荣,朱豪坤. 基于反目标法的引信复杂终点弹道等效模拟试验系统. 兵工学报. 2024(12): 4554-4564 . 百度学术
其他类型引用(0)
-