Shock wave loads on the blast door in straight tunnel
-
摘要: 为可靠开展抗爆结构设计与评估,基于理论计算与数值分析对直坑道内爆炸冲击波荷载的计算问题进行了研究。定量对比分析了现有不同方法计算结果的差异,基于结构响应对不同方法进行了评价,并结合模型实验对近距离爆炸情况下直坑道内防护门上的设计荷载取值问题进行了研究。结果表明,在进行荷载简化时有必要考虑荷载形式与结构响应的耦合,而现有坑道内爆炸冲击波荷载的简化计算方法普遍没有考虑结构动态特性影响,且相互之间存在很大差异,严重影响设计或评估工作的可靠性;近距离爆炸情况下,取门中线上距门边1/4宽度处的压力或门上平均压力作为坑道内防护门上的设计荷载,在比较宽的结构频率范围内是合理的。研究结果可为坑道内结构的防护设计提供参考。Abstract: In order to improve the design and safety assessment of the reliability of blast-resistant structures, we studied the simplified calculation of the shock wave loads caused by HE explosions in straight tunnel based on the theoretical calculation and numerical simulation. Firstly, the differences among existing calculation methods of in-tunnel shock wave loads and their results were evaluated quantitatively in detail and the effects of such differences on structure responses were discussed. Then the design loads on the blast door in a tunnel was studied based on the model test and numerical analysis. The results show that it is important to take into account the coupling effects of the structure response when developing simplified calculation methods for in-tunnel explosion shock wave loads. The existing simplified methods generally disregard such effects and differ from one another significantly, which leads to much more uncertainty in both design and assessment. For close range explosion, the design loads on the door can be taken from pressure at the point on the midline and 1/4 door-width away from the door-side, or from the average pressure on the door, which is reasonably acceptable in a wide range of structure frequencies. The present work can provide a reliable method for protection design of in-tunnel structures.
-
Key words:
- tunnel /
- shock wave loads /
- blast door /
- dynamic response
-
表 1 数值模拟结果与实验结果的对比
Table 1. Comparison of numerical results with tested data
装药量/g ΔP/MPa 误差/% i/(MPa·ms) 误差/% t+/ms 误差/% τ0/ms 误差/% 实验 数值 实验 数值 实验 数值 实验 数值 29.4 0.313 0.227 -27.5 0.204 0.178 -12.8 1.382 1.617 17.0 1.306 1.568 20.1 42.0 0.381 0.383 0.5 0.326 0.428 31.3 2.236 2.590 15.8 1.712 2.235 30.6 60.0 0.649 0.581 -10.5 0.955 0.607 -36.4 3.888 2.760 -29.0 2.939 2.090 -28.9 142.9 1.299 1.676 29.0 1.066 0.970 -9.0 2.340 2.576 10.1 1.641 1.158 -29.5 -
[1] 徐大力, 任新见.爆炸空气冲击波传播规律研究现状与发展趋势浅析[C]//中国土木工程学会防护工程分会第十三次学术年会论文集.浙江宁波, 2012: 213-217. [2] 于文华.防护门上的爆炸冲击波荷载研究[D].南京: 解放军理工大学, 2013. [3] 杨科之, 杨秀敏.坑道内化爆冲击波的传播规律[J].爆炸与冲击, 2001, 21(1):37-40. http://www.bzycj.cn/CN/abstract/abstract10016.shtmlYang Kezhi, Yang Xiumin.Shock waves propagation inside tunnel[J].Explosion and Shock Waves, 2001, 21(1):37-40. http://www.bzycj.cn/CN/abstract/abstract10016.shtml [4] US Army Engineer Waterways Experiment Station, Department of the Army.Fundamental of protective design for conventional weapon[M].Vicksburg, 1986. [5] Britt J R.Attenuation of short duration blast in entranceways and tunnels[C]//Paul Y T, Ross C A.Proceeding of the 2nd Symposium on the Interaction of Non-nuclear Munitions with Structures.Panama City Beach, Florida, 1985: 466-471. [6] Welch C R.In-tunnel air blast engineering model for internal and external detonations[C]//Proceeding of the 8th International Symposium on Interaction of the Effects of Munitions with Structures.Mclean, Virginia, 1997: 195-208. [7] Scheklinski G.Blast in tunnels and rooms from cylindrical HE-charges outside the tunnel entrance[C]//Douglass H M.Proceedings of the 6th Symposium on the International of Non-nuclear Munition with Structures.Panama City Beach, Florida, 1993: 68-73. [8] 何翔, 任辉启.305工程内爆炸试验中的冲击波传播规律[J].防护工程, 2002, 4(2):1-8. http://2010.cqvip.com/qk/95451X/200202/6594105.htmlHe Xiang, Ren Huiqi.Shock wave propagation in the 305 works inside explosion test[J].Protective Engineering, 2002, 4(2):1-8. http://2010.cqvip.com/qk/95451X/200202/6594105.html [9] 庞伟宾, 何翔, 李茂生, 等.空气冲击波在坑道内走时规律的实验研究[J].爆炸与冲击, 2003, 23(6):573-576. doi: 10.3321/j.issn:1001-1455.2003.06.016Pang Weibin, He Xiang, Li Maosheng, et al.The formula for air blast time of arrival in tunnel[J].Explosion and Shock Waves, 2003, 23(6):573-576. doi: 10.3321/j.issn:1001-1455.2003.06.016 [10] 陈海天, 李秀地, 郑颖人.内爆炸坑道中冲击波冲量试验[J].后勤工程学院学报, 2008, 24(2):6-9. doi: 10.3969/j.issn.1672-7843.2008.02.002Chen Haitian, Li Xiudi, Zheng Yingren.Scale model tests to determine in-tunnel blast impulse from HE-charges inside the tunnel entrance[J].Journal of Logistical Engineering University, 2008, 24(2):6-9. doi: 10.3969/j.issn.1672-7843.2008.02.002 [11] 李秀地, 郑颖人.坑道中冲击波冲量传播模型的试验[J].解放军理工大学学报, 2007, 8(5):425-428. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb200705004Li Xiudi, Zheng Yingren.Scale model tests to determine in-tunnel blast impulse from HE-charges at tunnel entrance[J].Journal of PLA University of Science and Technology, 2007, 8(5):425-428. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb200705004 [12] 隋树元, 王树山.终点效应学[M].北京:国防工业出版社, 2000:285-289. [13] 杨科之, 杨秀敏, 董军, 等.抗内爆炸结构的等效荷载设计法[J].工程力学, 2003(增刊):599-606. http://d.old.wanfangdata.com.cn/Conference/4205494Yang Kezhi, Yang Xiumin, Dong Jun, et al.Equivalent loads method for structures against internal explosion[J].Engineering Mechanics, 2003(suppl):599-606. http://d.old.wanfangdata.com.cn/Conference/4205494 期刊类型引用(3)
1. 张振兴,鲁军凯. 玄武岩纤维复合门抗爆性能开洞影响研究. 低温建筑技术. 2024(03): 70-74 . 百度学术
2. 王海腾,李治中,邵鲁中,唐德高,潘建. 坑道防护门化爆荷载值的数值模拟研究. 防护工程. 2022(05): 13-20 . 百度学术
3. 吴文溢,钟方平,王春明,王万鹏,熊益波. 坑道内化爆载荷数值模拟与泡沫混凝土吸能效应优化分析. 中国测试. 2018(10): 43-49 . 百度学术
其他类型引用(5)
-