Theoretical model of interface defeat/penetration transition velocity of ceramic armor impacted by long-rod projectile
-
摘要: 为预测长杆弹撞击装甲陶瓷界面击溃/侵彻转变过程,采用Hertz接触理论确定靶体内部应力,将其分别应用于陶瓷锥裂纹与翼型裂纹扩展理论。通过比较两种裂纹扩展模型计算得到的界面击溃/侵彻转变速度,提出准确预测界面击溃/侵彻转变速度的理论模型。结果表明:将两种裂纹扩展理论相结合的理论模型可以合理地解释界面击溃/侵彻转变过程,转变速度计算结果与已有实验结果吻合较好。弹体半径较小时,锥裂纹扩展控制界面击溃/侵彻转变过程;弹体半径较大时,翼型裂纹扩展控制界面击溃/侵彻转变过程。Abstract: In this study a theoretical model was established to predict the interface defeat/penetration transition velocity of a ceramic armor impacted by a long-rod projectile. Predications of the transition velocity were obtained by measuring the stress inside the target and then applying it in turn to the conical crack and the wing crack propagation theory. After that, a theoretical model consisting of the conical and the wing crack propagation theory was presented. The results show that the theoretical model can reasonably well describe the interface defeat/penetration transition process. The interface defeat/penetration transition velocity calculated by the theoretical model agrees well with the experimental results from the previously published literature. The conical crack propagation dominates the interface defeat/penetration transition process when the projectile radius is small, while the wing crack dominates the transition when the projectile radius is large.
-
表 1 不同靶体材料参数
Table 1. Target material data
材料 ν d/μm KIC/(MPa·m1/2) σHEL/GPa τy/GPa Δ B4C 0.16 3 2.5 22.2 4.19 0.37 TiB2 0.11 10 6.9 17 7.45 0.32 表 2 弹体材料参数
Table 2. Projctile matearil data
材料 ρp/(kg·m-3) Kp/GPa σyp/GPa WHA 17 700 285 1.3 Au 19 300 180 0.2 表 3 转变速度计算值与实验值对比
Table 3. Comparison of transition velocity between experimental data and theoretical calculation
材料 Pm/GPa vexp/(m·s-1)[4] vcal/(m·s-1) Error/% B4C 24.2 1 430~1 480 1493 0.8~4.4 TiB2 25.6 1 465~1 545 1526 0.0~4.2 表 4 不同靶体材料参数
Table 4. Target material data
材料 ν d/μm KIC/(MPa·m1/2) σHEL/GPa τy/GPa Δ SiC 0.16 4.8 2.6 16 6.48 0.20 -
[1] 陈小伟, 陈裕泽.脆性陶瓷靶高速侵彻/穿甲动力学的研究进展[J].力学进展, 2006, 36(1):85-102. doi: 10.3321/j.issn:1000-0992.2006.01.014Chen Xiaowei, Chen Yuze.Review on the penetration/perforation of ceramic targets[J].Advances in Mechanics, 2006, 36(1):85-102. doi: 10.3321/j.issn:1000-0992.2006.01.014 [2] Hauver G E, Netherwood P H, Benck R F, et al.Ballistic performance of ceramic targets[C]//Proceedings of Army Symposium on Solid Mechanics.Plymouth, MA, USA, 1993: 23-34. [3] Lundberg P, Renström R, Andersson O.Influence of length scale on the transition from interface defeat to penetration in unconfined ceramic targets[J].Journal of Applied Mechanics, 2013, 80(3):031804. http://adsabs.harvard.edu/abs/2013JAM....80c1804L [4] Lundberg P, Renström R, Lundberg B.Impact of metallic projectiles on ceramic targets:transition between interface defeat and penetration[J].International Journal of Impact Engineering, 2000, 24(3):259-275. doi: 10.1016/S0734-743X(99)00152-9 [5] Lundberg P, Lundberg B.Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials[J].International Journal of Impact Engineering, 2005, 31(7):781-792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ef82b777d826464dfa986f30f63e8da [6] Anderson Jr C E, Behner T, Holmquist T J, et al.Interface defeat of long rods impacting oblique silicon carbide[R].Southwest Research INST San Antonio TX, 2011. [7] Anderson C E, Walker J D.An analytical model for dwell and interface defeat[J].International Journal of Impact Engineering, 2005, 31(9):1119-1132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d86108fce5798e41c7c7d3d04d3ed44 [8] Li J C, Chen X W, Ning F.Comparative analysis on the interface defeat between the cylindrical and conical-nosed long rods[J].International Journal of Protective Structures, 2014, 5(1):21-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ba0c9474c20983355cec425e5135ff9 [9] Li J C, Chen X W, Ning F, et al.On the transition from interface defeat to penetration in the impact of long rod onto ceramic targets[J].International Journal of Impact Engineering, 2015, 83:37-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2ac35acfc55b7dc05596fd690b81ff4e [10] 李继承, 陈小伟.尖锥头长杆弹侵彻的界面击溃分析[J].力学学报, 2011, 43(1):63-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000219931Li Jicheng, Chen Xiaowei.Theoretical analysis on the interface defeat of a conical-nosed projectile penetration[J].Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):63-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000219931 [11] 李继承, 陈小伟.柱形长杆弹侵彻的界面击溃分析[J].爆炸与冲击, 2011, 31(2):141-147. http://www.bzycj.cn/CN/abstract/abstract8646.shtmlLi Jicheng, Chen Xiaowei.Theoretical analysis on the interface defeat of a long rod penetration[J].Explosion and Shock Waves, 2011, 31(2):141-147. http://www.bzycj.cn/CN/abstract/abstract8646.shtml [12] Holmquist T J, Johnson G R.Modeling prestressed ceramic and its effect on ballistic performance[J].International Journal of Impact Engineering, 2005, 31(2):113-127. doi: 10.1016/j.ijimpeng.2003.11.002 [13] Serjouei A.Modelling and analysis of bi-layer ceramic-metal protective structures[D].Singapore: Nanyang Technological University, 2014. [14] Chi R, Serjouei A, Sridhar I, et al.Pre-stress effect on confined ceramic armor ballistic performance[J].International Journal of Impact Engineering, 2015, 84:159-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9982a282644edd198a87275b9be74661 [15] Johnson K L.Contact mechanics[M].Cambridge, UK:Cambridge University Press, 1985:452. [16] Fischer-Cripps A C.Introduction to contact mechanics[M].Springer Berlin, 2010:241. [17] LaSalvia J C.A predictive model for the dwell/penetration transition phenomenon[C]//Proceeding of the 22th International Symposium on Ballistics.Canada, 2005, 2: 717-725. [18] Shih J C.Dynamic deformation of silicon carbide[D].San Diego: University of California, 1998. [19] Horii H, Nemat-Nasser S.Brittle failure in compression:splitting, faulting and brittle-ductile transition[J].Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1986, 319(1549):337-374. doi: 10.1098-rsta.1986.0101/ [20] LaSalvia J C, Horwath E J, Rapacki E J, et al.Microstructural and micromechanical aspects of ceramic/long-rod projectile interactions: dwell/penetration transitions[C]//Proceeding of Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena.New York, 2001: 437-446. [21] Milman Y V, Chugunova S I.Mechanical properties, indentation and dynamic yield stress of ceramic targets[J].International Journal of Impact Engineering, 1999, 23(1):629-638. doi: 10.1016/S0734-743X(99)00109-8 [22] Behner T, Anderson Jr C E, Holmquist T J, et al.Penetration dynamics and interface defeat capability of silicon carbide against long rod impact[J].International Journal of Impact Engineering, 2011, 38(6):419-425. doi: 10.1016/j.ijimpeng.2010.10.011 期刊类型引用(12)
1. 包健,马贵辉,孙龙泉,陈惟楚,李明. 带椭球形气囊航行体落水-上浮过程仿真. 兵工学报. 2024(01): 206-218 . 百度学术
2. 职明洋,燕国军,孙龙泉,王鹏霄. 带气囊结构航行体入水回收动力学特性研究. 力学学报. 2024(04): 943-959 . 百度学术
3. 郑伟,李强,范旭东,吕续舰. 跨介质航行器高速入水降载方法研究综述. 水下无人系统学报. 2024(03): 411-425 . 百度学术
4. 彭睿哲,冯和英,向敏,彭叶辉. 头部喷气对跨介质航行体入水过程载荷特性的影响. 舰船科学技术. 2024(13): 59-66 . 百度学术
5. 程时锃,陈浩,梁晶,胡慕秋,张凯. 跨介质滑翔器机翼设计与气动特性数值模拟. 舰船科学技术. 2024(19): 92-99 . 百度学术
6. 王占莹,权晓波,段金雄,孙铁志. 波浪环境下带助浮装置航行体落水冲击流场及运动特性研究. 爆炸与冲击. 2024(11): 141-158 . 本站查看
7. 王聪,许海雨,卢佳兴. 跨介质航行器入水多相流场及运动特性研究现状与展望. 水下无人系统学报. 2023(01): 38-49 . 百度学术
8. 黄恩光,彭辉,毛龙,杨威,郑强,姚俊,余维维. 某型气囊充气展开过程研究. 包装工程. 2022(03): 169-174 . 百度学术
9. 施瑶 ,刘振鹏 ,潘光 ,高兴甫 . 航行体梯度密度式头帽结构设计及降载性能分析. 力学学报. 2022(04): 939-953 . 百度学术
10. 施瑶,刘振鹏,潘光,高兴甫. 航行体开槽包裹式缓冲头帽结构设计及其降载性能. 爆炸与冲击. 2022(12): 95-107 . 本站查看
11. 薛齐文,王霄腾,何宜谦,郭敏,刘旭东,鄂智佳. 不同折叠形式的柱状气囊展开过程数值模拟. 航空工程进展. 2021(03): 161-170 . 百度学术
12. 杨威,屈纯,毛龙,舒君玲,牛同锋,姚俊. 气囊压力对跌倒防护气囊缓冲效果的实验研究. 应用力学学报. 2021(04): 1738-1744 . 百度学术
其他类型引用(12)
-