• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

长杆弹撞击装甲陶瓷界面击溃/侵彻转变速度理论模型

谈梦婷 张先锋 葛贤坤 刘闯 熊玮

王昌建, 徐胜利, 费立森. 气相爆轰波绕射流场显示研究[J]. 爆炸与冲击, 2006, 26(1): 27-32. doi: 10.11883/1001-1455(2006)01-0027-06
引用本文: 谈梦婷, 张先锋, 葛贤坤, 刘闯, 熊玮. 长杆弹撞击装甲陶瓷界面击溃/侵彻转变速度理论模型[J]. 爆炸与冲击, 2017, 37(6): 1093-1100. doi: 10.11883/1001-1455(2017)06-1093-08
WANG Chang-jian, XU Sheng-li, FEI Li-sen. Flow-field visualization for gaseous detonation diffraction experiments[J]. Explosion And Shock Waves, 2006, 26(1): 27-32. doi: 10.11883/1001-1455(2006)01-0027-06
Citation: Tan Mengting, Zhang Xianfeng, Ge Xiankun, Liu Chuang, Xiong Wei. Theoretical model of interface defeat/penetration transition velocity of ceramic armor impacted by long-rod projectile[J]. Explosion And Shock Waves, 2017, 37(6): 1093-1100. doi: 10.11883/1001-1455(2017)06-1093-08

长杆弹撞击装甲陶瓷界面击溃/侵彻转变速度理论模型

doi: 10.11883/1001-1455(2017)06-1093-08
基金项目: 

国家自然科学基金项目 11772159

江苏省研究生科研创新计划项目 KYCX17_0385, KYZZ16_0196

瞬态冲击技术重点实验室基金项目 61426060101162606001

详细信息
    作者简介:

    谈梦婷(1991-),女,博士研究生

    通讯作者:

    张先锋,lynx@njust.edu.cn

  • 中图分类号: O381

Theoretical model of interface defeat/penetration transition velocity of ceramic armor impacted by long-rod projectile

  • 摘要: 为预测长杆弹撞击装甲陶瓷界面击溃/侵彻转变过程,采用Hertz接触理论确定靶体内部应力,将其分别应用于陶瓷锥裂纹与翼型裂纹扩展理论。通过比较两种裂纹扩展模型计算得到的界面击溃/侵彻转变速度,提出准确预测界面击溃/侵彻转变速度的理论模型。结果表明:将两种裂纹扩展理论相结合的理论模型可以合理地解释界面击溃/侵彻转变过程,转变速度计算结果与已有实验结果吻合较好。弹体半径较小时,锥裂纹扩展控制界面击溃/侵彻转变过程;弹体半径较大时,翼型裂纹扩展控制界面击溃/侵彻转变过程。
  • 图  1  靶体内部应力分布

    Figure  1.  Normalized stress distributions inside ceramic

    图  2  界面击溃时TiB2内裂纹情况[18]

    Figure  2.  Cracks in TiB2 during interface defeat[18]

    图  3  基于裂纹扩展的转变速度理论模型

    Figure  3.  Combined criterion of interface defeat/penetration transition velocity based on crack propagation model

    图  4  锥裂纹扩展模型示意图

    Figure  4.  Schematic illustration of cone crack propagation model

    图  5  弹体半径为0.5 mm、撞击速度为1 000 m/s时,等效应力与裂纹长度的关系

    Figure  5.  Relation between normalized stress and crack length at impact velocity of 1 000 m/s with projetcile radius of 0.5 mm

    图  6  脆性材料压缩失效翼型裂纹扩展模型示意图[19]

    Figure  6.  Schematic illstration of wing crack in compressive failure model of brittle materia[19]l

    图  7  不同理论模型得到的转变速度与弹体半径的关系与实验结果[3]对比

    Figure  7.  Comparison between experimental data[3] and different theoretical calculations on transition velocity

    图  8  不同弹体材料转变速度与弹体半径的关系

    Figure  8.  Relation between transition velocity and projectile radius of different projectile materials

    表  1  不同靶体材料参数

    Table  1.   Target material data

    材料 ν d/μm KIC/(MPa·m1/2) σHEL/GPa τy/GPa Δ
    B4C 0.16 3 2.5 22.2 4.19 0.37
    TiB2 0.11 10 6.9 17 7.45 0.32
    下载: 导出CSV

    表  2  弹体材料参数

    Table  2.   Projctile matearil data

    材料 ρp/(kg·m-3) Kp/GPa σyp/GPa
    WHA 17 700 285 1.3
    Au 19 300 180 0.2
    下载: 导出CSV

    表  3  转变速度计算值与实验值对比

    Table  3.   Comparison of transition velocity between experimental data and theoretical calculation

    材料 Pm/GPa vexp/(m·s-1)[4] vcal/(m·s-1) Error/%
    B4C 24.2 1 430~1 480 1493 0.8~4.4
    TiB2 25.6 1 465~1 545 1526 0.0~4.2
    下载: 导出CSV

    表  4  不同靶体材料参数

    Table  4.   Target material data

    材料 ν d/μm KIC/(MPa·m1/2) σHEL/GPa τy/GPa Δ
    SiC 0.16 4.8 2.6 16 6.48 0.20
    下载: 导出CSV
  • [1] 陈小伟, 陈裕泽.脆性陶瓷靶高速侵彻/穿甲动力学的研究进展[J].力学进展, 2006, 36(1):85-102. doi: 10.3321/j.issn:1000-0992.2006.01.014

    Chen Xiaowei, Chen Yuze.Review on the penetration/perforation of ceramic targets[J].Advances in Mechanics, 2006, 36(1):85-102. doi: 10.3321/j.issn:1000-0992.2006.01.014
    [2] Hauver G E, Netherwood P H, Benck R F, et al.Ballistic performance of ceramic targets[C]//Proceedings of Army Symposium on Solid Mechanics.Plymouth, MA, USA, 1993: 23-34.
    [3] Lundberg P, Renström R, Andersson O.Influence of length scale on the transition from interface defeat to penetration in unconfined ceramic targets[J].Journal of Applied Mechanics, 2013, 80(3):031804. http://adsabs.harvard.edu/abs/2013JAM....80c1804L
    [4] Lundberg P, Renström R, Lundberg B.Impact of metallic projectiles on ceramic targets:transition between interface defeat and penetration[J].International Journal of Impact Engineering, 2000, 24(3):259-275. doi: 10.1016/S0734-743X(99)00152-9
    [5] Lundberg P, Lundberg B.Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials[J].International Journal of Impact Engineering, 2005, 31(7):781-792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ef82b777d826464dfa986f30f63e8da
    [6] Anderson Jr C E, Behner T, Holmquist T J, et al.Interface defeat of long rods impacting oblique silicon carbide[R].Southwest Research INST San Antonio TX, 2011.
    [7] Anderson C E, Walker J D.An analytical model for dwell and interface defeat[J].International Journal of Impact Engineering, 2005, 31(9):1119-1132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d86108fce5798e41c7c7d3d04d3ed44
    [8] Li J C, Chen X W, Ning F.Comparative analysis on the interface defeat between the cylindrical and conical-nosed long rods[J].International Journal of Protective Structures, 2014, 5(1):21-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ba0c9474c20983355cec425e5135ff9
    [9] Li J C, Chen X W, Ning F, et al.On the transition from interface defeat to penetration in the impact of long rod onto ceramic targets[J].International Journal of Impact Engineering, 2015, 83:37-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2ac35acfc55b7dc05596fd690b81ff4e
    [10] 李继承, 陈小伟.尖锥头长杆弹侵彻的界面击溃分析[J].力学学报, 2011, 43(1):63-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000219931

    Li Jicheng, Chen Xiaowei.Theoretical analysis on the interface defeat of a conical-nosed projectile penetration[J].Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):63-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000219931
    [11] 李继承, 陈小伟.柱形长杆弹侵彻的界面击溃分析[J].爆炸与冲击, 2011, 31(2):141-147. http://www.bzycj.cn/CN/abstract/abstract8646.shtml

    Li Jicheng, Chen Xiaowei.Theoretical analysis on the interface defeat of a long rod penetration[J].Explosion and Shock Waves, 2011, 31(2):141-147. http://www.bzycj.cn/CN/abstract/abstract8646.shtml
    [12] Holmquist T J, Johnson G R.Modeling prestressed ceramic and its effect on ballistic performance[J].International Journal of Impact Engineering, 2005, 31(2):113-127. doi: 10.1016/j.ijimpeng.2003.11.002
    [13] Serjouei A.Modelling and analysis of bi-layer ceramic-metal protective structures[D].Singapore: Nanyang Technological University, 2014.
    [14] Chi R, Serjouei A, Sridhar I, et al.Pre-stress effect on confined ceramic armor ballistic performance[J].International Journal of Impact Engineering, 2015, 84:159-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9982a282644edd198a87275b9be74661
    [15] Johnson K L.Contact mechanics[M].Cambridge, UK:Cambridge University Press, 1985:452.
    [16] Fischer-Cripps A C.Introduction to contact mechanics[M].Springer Berlin, 2010:241.
    [17] LaSalvia J C.A predictive model for the dwell/penetration transition phenomenon[C]//Proceeding of the 22th International Symposium on Ballistics.Canada, 2005, 2: 717-725.
    [18] Shih J C.Dynamic deformation of silicon carbide[D].San Diego: University of California, 1998.
    [19] Horii H, Nemat-Nasser S.Brittle failure in compression:splitting, faulting and brittle-ductile transition[J].Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1986, 319(1549):337-374. doi: 10.1098-rsta.1986.0101/
    [20] LaSalvia J C, Horwath E J, Rapacki E J, et al.Microstructural and micromechanical aspects of ceramic/long-rod projectile interactions: dwell/penetration transitions[C]//Proceeding of Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena.New York, 2001: 437-446.
    [21] Milman Y V, Chugunova S I.Mechanical properties, indentation and dynamic yield stress of ceramic targets[J].International Journal of Impact Engineering, 1999, 23(1):629-638. doi: 10.1016/S0734-743X(99)00109-8
    [22] Behner T, Anderson Jr C E, Holmquist T J, et al.Penetration dynamics and interface defeat capability of silicon carbide against long rod impact[J].International Journal of Impact Engineering, 2011, 38(6):419-425. doi: 10.1016/j.ijimpeng.2010.10.011
  • 期刊类型引用(12)

    1. 包健,马贵辉,孙龙泉,陈惟楚,李明. 带椭球形气囊航行体落水-上浮过程仿真. 兵工学报. 2024(01): 206-218 . 百度学术
    2. 职明洋,燕国军,孙龙泉,王鹏霄. 带气囊结构航行体入水回收动力学特性研究. 力学学报. 2024(04): 943-959 . 百度学术
    3. 郑伟,李强,范旭东,吕续舰. 跨介质航行器高速入水降载方法研究综述. 水下无人系统学报. 2024(03): 411-425 . 百度学术
    4. 彭睿哲,冯和英,向敏,彭叶辉. 头部喷气对跨介质航行体入水过程载荷特性的影响. 舰船科学技术. 2024(13): 59-66 . 百度学术
    5. 程时锃,陈浩,梁晶,胡慕秋,张凯. 跨介质滑翔器机翼设计与气动特性数值模拟. 舰船科学技术. 2024(19): 92-99 . 百度学术
    6. 王占莹,权晓波,段金雄,孙铁志. 波浪环境下带助浮装置航行体落水冲击流场及运动特性研究. 爆炸与冲击. 2024(11): 141-158 . 本站查看
    7. 王聪,许海雨,卢佳兴. 跨介质航行器入水多相流场及运动特性研究现状与展望. 水下无人系统学报. 2023(01): 38-49 . 百度学术
    8. 黄恩光,彭辉,毛龙,杨威,郑强,姚俊,余维维. 某型气囊充气展开过程研究. 包装工程. 2022(03): 169-174 . 百度学术
    9. 施瑶 ,刘振鹏 ,潘光 ,高兴甫 . 航行体梯度密度式头帽结构设计及降载性能分析. 力学学报. 2022(04): 939-953 . 百度学术
    10. 施瑶,刘振鹏,潘光,高兴甫. 航行体开槽包裹式缓冲头帽结构设计及其降载性能. 爆炸与冲击. 2022(12): 95-107 . 本站查看
    11. 薛齐文,王霄腾,何宜谦,郭敏,刘旭东,鄂智佳. 不同折叠形式的柱状气囊展开过程数值模拟. 航空工程进展. 2021(03): 161-170 . 百度学术
    12. 杨威,屈纯,毛龙,舒君玲,牛同锋,姚俊. 气囊压力对跌倒防护气囊缓冲效果的实验研究. 应用力学学报. 2021(04): 1738-1744 . 百度学术

    其他类型引用(12)

  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  4445
  • HTML全文浏览量:  1380
  • PDF下载量:  510
  • 被引次数: 24
出版历程
  • 收稿日期:  2016-03-24
  • 修回日期:  2016-08-18
  • 刊出日期:  2017-11-25

目录

    /

    返回文章
    返回