Experimental study of TiNi tubes under radial impact with and without lateral constraint
-
摘要: 为了解TiNi柱壳横向压缩力学性能以制造可重复使用抗冲吸能装置, 对有、无侧向约束的TiNi柱壳进行了横向冲击实验。利用改进的霍普金森压杆装置(SHPB), 配套波形分离方法, 实现了较长时间(~3 ms)的波形测量, 获得了TiNi柱壳在动态加载下的载荷压缩量曲线。通过高速摄影, 捕捉了柱壳的动态变形过程。结果表明, 无约束试件具有优良的可恢复变形能力, 承载力平台段特征明显。侧向约束的引入, 可以有效提高柱壳的承载力和耗能能力, 可以承受更高速度的冲击。选择合适的约束组合, 可望同时实现较大压缩行程和高耗能, 制造实用的抗冲吸能装置。Abstract: TiNi tubes with and without lateral constraint subjected to radial impact were investigated experimentally for the purpose of developing repeatedly used energy absorption devices.By using a modified SHPB apparatus and wave separation technique, the signal recorded was extended to about 3ms, and then the load-compression curves were available.With a high speed CCD camera, the dynamic deformation process of the specimens was captured.The results show that TiNi tubes without lateral constraint have an excellent recoverable deformability with apparent loading platform.The tubes with lateral constraint have a much better performance of energy dissipation and are able to withstand higher speed impact.If properly choosing the combination of two constraints, it may improve its dynamic performance both in the large deformation and high energy dissipation and will be used in the future shock absorbing devices.
-
表 1 实验参数和结果
Table 1. Experimental parameters and results under radial impact
No. v0/(m·s-1) δmax/mm δmax/D Fmax/N E0/J Ed/J χ/(J·g-1) η/% ss-1 3.17 1.59 0.199 287 0.347 0.038 0.58 10.9 ss-2 3.70 2.05 0.256 309 0.473 0.086 0.79 18.2 ss-3 4.69 2.91 0.364 368 0.759 0.162 1.26 21.3 ss-4 6.73 4.20 0.530 659 1.563 0.890 2.60 57.0 ff-1 3.83 1.08 0.135 748 0.506 0.124 0.84 24.5 ff-2 4.74 1.38 0.173 854 0.775 0.238 1.29 30.7 ff-3 5.28 1.50 0.188 1 037 0.962 0.338 1.60 35.1 -
[1] 余同希.利用金属塑性变形原理的碰撞能量吸收装置[J].力学进展, 1986, 16(1): 28-39.Yu Tong-xi. Impact energy absorbing devices based upon the plastic deformation of metallic elements[J]. Advances in Mechanics, 1986, 16(1): 28-39. [2] Khan M M, Lagoudas D C, Mayes J J, et al. Pseudo-elastic SMA spring element for passive vibration isolation: PartⅠ: Modeling[J]. Journal of Intelligent Material Systems and Structures, 2004(15): 415-441. [3] Lagoudas D C, Khan M M, Mayes J J. Pseudo-elastic SMA Spring element for passive vibration isolation: PartⅡ: Simulations and experimental correlations[J]. Journal of Intelligent Material Systems and Structures, 2004(15): 443-470. [4] Rivin E I, Sayal G, Johal P R S. "Giant Superelasticity Effect"in NiTi superelastic materials and its applications[J]. Journal of Materials in Civil Engineering, 2006, 18(6): 851-857. doi: 10.1061/(ASCE)0899-1561(2006)18:6(851) [5] Dong Yin-sheng, Xiong Jiu-lang, Li Ai-qun, et al. Evaluation of properties for a passive damping device with TiNirings as dissipating elemen[J]. Journal of Southeast University: English Edition, 2005, 21(3): 310-313. [6] Zhang Ke, Zhang Hui-jie, Tang Zhi-ping. Experimental study of thin-walled TiNi tubes under radial quasi-static compression[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(18): 2113-2126. doi: 10.1177/1045389X11426344 [7] 徐薇薇.几种基本构件的冲击相变响应的数值模拟研究[D].合肥: 中国科学技术大学, 2009: 131-158. [8] 唐志平, 张会杰.相变柱壳的横向冲击特性[J].爆炸与冲击, 2013, 33(1): 47-53.Tang Zhi-ping, Zhang Hui-jie. Radial impact responses of cylindrical shells with phase transformation[J]. Explosion and Shock Waves, 2013, 33(1): 47-53. [9] 巫绪涛, 胡时胜, 张芳容.两点应变测量法在SHPB测量技术上的运用[J].爆炸与冲击, 2003, 23(4): 309-312.Wu Xu-tao, Hu Shi-sheng, Zhang Fang-rong. Application of two-point strain measurement to the SHPB technique[J]. Explosion and Shock Waves, 2003, 23(4): 309-312. [10] Lundberg B, Carlsson J, Sundin K G. Analysis of elastic-waves in nonuniform rods from 2-point strain-measurement[J]. Journal of Sound and Vibration, 1990, 137(3): 483-493. doi: 10.1016/0022-460X(90)90813-F [11] Park S W, Zhou M. Separation of elastic waves in split Hopkinson bars using one-point strain measurements[J]. Experimental Mechanics, 1999, 39(4): 287-294. doi: 10.1007/BF02329807 [12] Zhao H, Gary G. A new method for the separation of waves: Application to the SHPB technique for an unlimited duration of measurement[J]. Journal of The Mechanics and Physics of Solids, 1997, 45(7): 1185-1202. doi: 10.1016/S0022-5096(96)00117-2 [13] Saadat S, Salichs J, Nooriet M, et al. An overview of vibration and seismic applications of NiTi shape memory alloy[J]. Smart Materials & Structures, 2002, 11(2): 218-229.