Experimental research on bubble pulse of small scale charge exploded under simulated deep water
-
摘要: 为在实验室内开展深水爆炸气泡脉动规律研究, 通过增加水面大气压强来模拟水中静水压的方法, 建立可模拟深水环境的爆炸容器。开展不同模拟水深条件下的3种当量炸药的水下爆炸实验, 得到了气泡脉动过程图像, 验证小当量深水爆炸模拟实验与自由场实验的等效性, 分析气泡脉动周期与最大半径同模拟水深的关系。实验结果表明:容器壁面反射效应对气泡脉动过程的影响可以忽略不计, 模拟实验可等效为自由场实验; 深水爆炸气泡脉动周期及最大半径随流体静力深度增加的衰减系数分别为-0.83和-0.364。Abstract: For investigating bubble pulse of small scale charge exploded under deepwater in the laboratory, an experiment platform of charge exploded under simulated deepwater is established by means of adding atmospheric pressure over the water surface to increase the hydrostatic pressure.Experiments of 3 small scale charges exploded under different simulated deepwater environments are conducted.Images of bubble pulse process are gained.The equivalence between experiments of small scale charge exploded under simulated deepwater and experiments under free-field is validated.The variations of the period and the maximum radius of bubble pulse depending on the water depth are analyzed.Passing through these experiments, the reflection effect from the containment vessel shell can be neglected for the bubble pulse process, and the simulated deepwater environment can be regarded as real free-field deepwater environment.When increasing the hydrostatic water depth, the attenuation coefficients of the period and the maximum radius of bubble pulse of small scale charge exploded under deepwater are-0.83 and-0.364, respectively.
-
表 1 不同药量不同模拟水深气泡脉动周期及最大半径实验值
Table 1. Experimental data of bubble period and maximum radius at different charge weight and water depth conditions
w/g ps/MPa T/ms Rm/mm 0.125 0 16.5 79.7 0.125 0.2 6.5 54.2 0.125 0.3 5.0 - 0.125 0.4 3.8 42.9 0.125 0.6 3.2 38.7 0.125 1.0 2.3 36.4 0.500 0 22.5 - 0.500 0.4 6.5 71.1 0.500 0.6 4.8 63.7 1.000 0 27.0 - 1.000 0.2 11.5 103.3 1.000 0.4 8.0 87.3 1.000 0.6 6.0 79.1 1.000 0.9 4.5 69.3 -
[1] Slifko J P. Pressure-pulse characteristics of deep explosions as functions of depth and range[R]. AD-661804, 1967. [2] Cole R H. Underwater explosion[M]. New Jersey: LISA, Princeton University, 1948. [3] 王建灵, 胡宏伟, 郭炜, 等.池壁和水中障碍物对气泡脉动影响研究[C]∥第五届全国爆炸力学实验技术学术会议论文集. 2008: 300-305. [4] 汪斌, 王彦平, 张远平.有限水域气泡脉动实验方法研究[J].火炸药学报, 2008, 31(3): 32-35.Wang Bin, Wang Yan-ping, Zhang Yuan-ping. A method of studying bubble pulses in confined water area[J]. Chinese Journal of Explosives and Propellants, 2008, 31(3): 32-35. [5] 胡毅亭, 贾宪振, 饶国宁, 等.水下爆炸冲击波和气泡脉动的数值模拟研究[J].舰船科学与技术, 2009, 31(2): 134-140. http://www.cnki.com.cn/Article/CJFDTotal-JCKX200902037.htmHu Yi-ting, Jia Xian-zhen, Rao Guo-ning, et al. Numerical study of underwater explosion shock wave and bubble pulse[J]. Ship Science and Technology, 2009, 31(2): 134-140. http://www.cnki.com.cn/Article/CJFDTotal-JCKX200902037.htm [6] 荣吉利, 李健.基于Dytran软件的三维水下爆炸气泡运动研究[J].兵工学报, 2008, 29(3): 331-336. http://www.cnki.com.cn/Article/CJFDTotal-BIGO200803017.htmRong Ji-li, Li Jian. Research on the motion of three-dimensional underwater explosion bubble with Dytran software[J]. Acta Armamentarii, 2008, 29(3): 331-336. http://www.cnki.com.cn/Article/CJFDTotal-BIGO200803017.htm [7] 贾宪振.基于通用程序的水下爆炸及其对结构作用的数值模拟研究[D].南京: 南京理工大学, 2007. [8] 张阿漫, 姚熊亮.水深和药量的变化对水下爆炸气泡射流的影响研究[J].工程力学, 2008, 25(3): 222-229. http://www.cnki.com.cn/Article/CJFDTotal-GCLX200803040.htmZhang A-man, Yao Xiong-liang. The effect of charge and water depth on the underwater explosion bubble[J]. Engineering Mechanics, 2008, 25(3): 222-229. http://www.cnki.com.cn/Article/CJFDTotal-GCLX200803040.htm [9] 钟帅.模拟深水爆炸装药输出能量的研究[D].淮南: 安徽理工大学, 2007. [10] 孙跃光.模拟深水装药爆炸作功能力研究[D].淮南: 安徽理工大学, 2008. [11] 洪江波, 李海涛, 朱锡, 等.水下爆炸的高速摄影测试技术研究[J].武汉理工大学学报, 2008, 30(5): 82-86. http://d.wanfangdata.com.cn/Periodical/whgydxxb200805022Hong Jiang-bo, Li Hai-tao, Zhu Xi, et al. High-speed photographic investigation of bubble induced by underwater explosion[J]. Journal of Wuhan University of Technology, 2008, 30(5): 82-86. http://d.wanfangdata.com.cn/Periodical/whgydxxb200805022 [12] 王占江.岩土中填实与空腔解耦爆炸的化爆模拟实验研究[D].长沙: 国防科学技术大学, 2003.