Experimental research on bubble pulse of small scale charge exploded under simulated deep water
-
摘要: 为在实验室内开展深水爆炸气泡脉动规律研究, 通过增加水面大气压强来模拟水中静水压的方法, 建立可模拟深水环境的爆炸容器。开展不同模拟水深条件下的3种当量炸药的水下爆炸实验, 得到了气泡脉动过程图像, 验证小当量深水爆炸模拟实验与自由场实验的等效性, 分析气泡脉动周期与最大半径同模拟水深的关系。实验结果表明:容器壁面反射效应对气泡脉动过程的影响可以忽略不计, 模拟实验可等效为自由场实验; 深水爆炸气泡脉动周期及最大半径随流体静力深度增加的衰减系数分别为-0.83和-0.364。Abstract: For investigating bubble pulse of small scale charge exploded under deepwater in the laboratory, an experiment platform of charge exploded under simulated deepwater is established by means of adding atmospheric pressure over the water surface to increase the hydrostatic pressure.Experiments of 3 small scale charges exploded under different simulated deepwater environments are conducted.Images of bubble pulse process are gained.The equivalence between experiments of small scale charge exploded under simulated deepwater and experiments under free-field is validated.The variations of the period and the maximum radius of bubble pulse depending on the water depth are analyzed.Passing through these experiments, the reflection effect from the containment vessel shell can be neglected for the bubble pulse process, and the simulated deepwater environment can be regarded as real free-field deepwater environment.When increasing the hydrostatic water depth, the attenuation coefficients of the period and the maximum radius of bubble pulse of small scale charge exploded under deepwater are-0.83 and-0.364, respectively.
-
表 1 不同药量不同模拟水深气泡脉动周期及最大半径实验值
Table 1. Experimental data of bubble period and maximum radius at different charge weight and water depth conditions
w/g ps/MPa T/ms Rm/mm 0.125 0 16.5 79.7 0.125 0.2 6.5 54.2 0.125 0.3 5.0 - 0.125 0.4 3.8 42.9 0.125 0.6 3.2 38.7 0.125 1.0 2.3 36.4 0.500 0 22.5 - 0.500 0.4 6.5 71.1 0.500 0.6 4.8 63.7 1.000 0 27.0 - 1.000 0.2 11.5 103.3 1.000 0.4 8.0 87.3 1.000 0.6 6.0 79.1 1.000 0.9 4.5 69.3 -
[1] Slifko J P. Pressure-pulse characteristics of deep explosions as functions of depth and range[R]. AD-661804, 1967. [2] Cole R H. Underwater explosion[M]. New Jersey: LISA, Princeton University, 1948. [3] 王建灵, 胡宏伟, 郭炜, 等.池壁和水中障碍物对气泡脉动影响研究[C]∥第五届全国爆炸力学实验技术学术会议论文集. 2008: 300-305. [4] 汪斌, 王彦平, 张远平.有限水域气泡脉动实验方法研究[J].火炸药学报, 2008, 31(3): 32-35.Wang Bin, Wang Yan-ping, Zhang Yuan-ping. A method of studying bubble pulses in confined water area[J]. Chinese Journal of Explosives and Propellants, 2008, 31(3): 32-35. [5] 胡毅亭, 贾宪振, 饶国宁, 等.水下爆炸冲击波和气泡脉动的数值模拟研究[J].舰船科学与技术, 2009, 31(2): 134-140. http://www.cnki.com.cn/Article/CJFDTotal-JCKX200902037.htmHu Yi-ting, Jia Xian-zhen, Rao Guo-ning, et al. Numerical study of underwater explosion shock wave and bubble pulse[J]. Ship Science and Technology, 2009, 31(2): 134-140. http://www.cnki.com.cn/Article/CJFDTotal-JCKX200902037.htm [6] 荣吉利, 李健.基于Dytran软件的三维水下爆炸气泡运动研究[J].兵工学报, 2008, 29(3): 331-336. http://www.cnki.com.cn/Article/CJFDTotal-BIGO200803017.htmRong Ji-li, Li Jian. Research on the motion of three-dimensional underwater explosion bubble with Dytran software[J]. Acta Armamentarii, 2008, 29(3): 331-336. http://www.cnki.com.cn/Article/CJFDTotal-BIGO200803017.htm [7] 贾宪振.基于通用程序的水下爆炸及其对结构作用的数值模拟研究[D].南京: 南京理工大学, 2007. [8] 张阿漫, 姚熊亮.水深和药量的变化对水下爆炸气泡射流的影响研究[J].工程力学, 2008, 25(3): 222-229. http://www.cnki.com.cn/Article/CJFDTotal-GCLX200803040.htmZhang A-man, Yao Xiong-liang. The effect of charge and water depth on the underwater explosion bubble[J]. Engineering Mechanics, 2008, 25(3): 222-229. http://www.cnki.com.cn/Article/CJFDTotal-GCLX200803040.htm [9] 钟帅.模拟深水爆炸装药输出能量的研究[D].淮南: 安徽理工大学, 2007. [10] 孙跃光.模拟深水装药爆炸作功能力研究[D].淮南: 安徽理工大学, 2008. [11] 洪江波, 李海涛, 朱锡, 等.水下爆炸的高速摄影测试技术研究[J].武汉理工大学学报, 2008, 30(5): 82-86. http://d.wanfangdata.com.cn/Periodical/whgydxxb200805022Hong Jiang-bo, Li Hai-tao, Zhu Xi, et al. High-speed photographic investigation of bubble induced by underwater explosion[J]. Journal of Wuhan University of Technology, 2008, 30(5): 82-86. http://d.wanfangdata.com.cn/Periodical/whgydxxb200805022 [12] 王占江.岩土中填实与空腔解耦爆炸的化爆模拟实验研究[D].长沙: 国防科学技术大学, 2003. 期刊类型引用(18)
1. 王成,杨长鑫,贾曦雨,杨同会. 含铝炸药深水爆炸能量输出特性高精度数值模拟研究. 北京理工大学学报. 2024(08): 872-878 . 百度学术
2. 王树山,贾曦雨,高源,马峰,卢熹,张静骁,孙雨荟,梁策. 水下爆炸动力学的起源、发展与展望. 水下无人系统学报. 2023(01): 10-29 . 百度学术
3. 王燕,刘哲函,李健,邹士亚,王晓明,唐伟,南德. 利用气泡脉动周期估计水下爆炸当量和深度的方法研究. 爆破. 2023(03): 217-224 . 百度学术
4. 张海涛,刘磊,王远. 深水压力下乳化炸药的气泡脉动周期. 工程爆破. 2022(02): 98-104 . 百度学术
5. 阚润哲,聂建新,郭学永,闫石,焦清介,张韬. 不同铝氧比CL-20基含铝炸药深水爆炸能量输出特性. 兵工学报. 2022(05): 1023-1031 . 百度学术
6. 段超伟,宋浦. 典型含铝炸药深水爆炸气泡脉动特性研究. 兵器装备工程学报. 2022(06): 84-89 . 百度学术
7. 陈岩武,孙远翔,王成. 深水爆炸载荷及对潜艇结构毁伤研究进展. 舰船科学技术. 2021(23): 9-15 . 百度学术
8. 夏彬伟,高玉刚,刘承伟,欧昌楠,彭子烨,刘浪. 缝槽水压爆破破岩载荷实验研究. 工程科学学报. 2020(09): 1130-1138 . 百度学术
9. 宋歌,龙源,钟明寿,王敏,吴建宇. 离心机和密闭加压容器中水下爆炸相似关系. 爆炸与冲击. 2019(02): 95-103 . 本站查看
10. DONG Mingrong,FU Liyun,XING Chao,YANG Shaodong,YANG Jun,LI Xiaobin. Research on Energy Radiation Characteristics of an Airgun Source Excited in Land Reservoir. Earthquake Research in China. 2019(01): 24-36 . 必应学术
11. 冯凇,饶国宁,彭金华,汪斌. CL-20基炸药水中爆炸气泡脉动实验研究. 爆炸与冲击. 2018(04): 855-862 . 本站查看
12. 董明荣,符力耘,邢超,杨军,李孝宾. 气枪震源水中能量辐射特性研究. 中国地震. 2018(01): 25-34 . 百度学术
13. 史晓骏. 水下爆炸冲击波载荷作用下舰船板架结构冲击可靠性研究. 舰船科学技术. 2017(06): 10-12 . 百度学术
14. HU Jing,CHEN ZuYu,ZHANG XueDong,WEI YingQi,LIANG XiangQian,LIANG JianHui,MA GuoWei,WANG QiuSheng,LONG Yuan. Underwater explosion in centrifuge part Ⅰ:Validation and calibration of scaling laws. Science China(Technological Sciences). 2017(11): 1638-1657 . 必应学术
15. 施红辉,周杨洁,贾会霞,朱棒棒. 水深和弹体长径比对超空泡弹体阻力系数及空泡形状影响的实验研究. 兵工学报. 2016(11): 2029-2036 . 百度学术
16. 梁浩哲,杨莉,张庆明. 深水条件下TNT炸药的爆炸特性. 兵工学报. 2016(S2): 241-245 . 百度学术
17. 贾虎,沈兆武. 低能量导爆索水中爆炸气泡的脉动现象. 含能材料. 2016(04): 393-397 . 百度学术
18. 梁向前,胡晶,马宏昊. 球形炸药设计及其水下爆炸冲击波特性. 工程爆破. 2015(06): 19-24 . 百度学术
其他类型引用(6)
-