水/气多介质问题的界面处理方法

徐爽 赵宁 王春武 王东红

徐爽, 赵宁, 王春武, 王东红. 水/气多介质问题的界面处理方法[J]. 爆炸与冲击, 2015, 35(3): 326-334. doi: 10.11883/1001-1455-(2015)03-0326-09
引用本文: 徐爽, 赵宁, 王春武, 王东红. 水/气多介质问题的界面处理方法[J]. 爆炸与冲击, 2015, 35(3): 326-334. doi: 10.11883/1001-1455-(2015)03-0326-09
Xu Shuang, Zhao Ning, Wang Chun-wu, Wang Dong-hong. Interface treating methods for the gas-water multi-phase flows[J]. Explosion And Shock Waves, 2015, 35(3): 326-334. doi: 10.11883/1001-1455-(2015)03-0326-09
Citation: Xu Shuang, Zhao Ning, Wang Chun-wu, Wang Dong-hong. Interface treating methods for the gas-water multi-phase flows[J]. Explosion And Shock Waves, 2015, 35(3): 326-334. doi: 10.11883/1001-1455-(2015)03-0326-09

水/气多介质问题的界面处理方法

doi: 10.11883/1001-1455-(2015)03-0326-09
基金项目: 国家自然科学基金项目(11271188, 91130030);北京理工大学爆炸科学与技术国家重点实验室开放基金项目(KFJJ11-4 M)
详细信息
    作者简介:

    徐爽(1984—), 男, 博士研究生, shuangxu@nuaa.edu.cn

  • 中图分类号: O382.1

Interface treating methods for the gas-water multi-phase flows

  • 摘要: 针对不可压缩可压缩水/气多介质问题, 提出一种新的界面处理方法。在可压缩水/气界面处构造Riemann问题, 在水中设音速趋于无穷大, 求解Riemann问题得到不可压缩可压缩水/气界面处流体的准确流动状态; 然后以此状态结合GFM(ghost fluid method)方法分别为2种流体定义界面边界条件, 将两相流问题转化为单相流问题计算, 通过求解level set方程来跟踪界面的位置。对各种不同的界面边界条件定义方法进行了比较, 数值模拟结果表明算法能准确地捕捉各类间断的位置, 证明了算法的有效性和稳健性。
  • 图  1  利用MGFM方法对气体定义界面边界条件

    Figure  1.  The definition of interface boundary condition for gas by MGFM method

    图  2  利用RGFM方法对气体定义界面边界条件

    Figure  2.  The definition of interface boundary condition for gas by RGFM method

    图  3  密度1 000 kg/m3的水在空气中向右运动时流场密度

    Figure  3.  Density profile of the water movement in air while water density is 1 000 kg/m3

    图  4  密度1 000 kg/m3的水在空气中向右运动时流场速度

    Figure  4.  Velocity profile of the water movement in air while water density is 1 000 kg/m3

    图  5  密度1 000 kg/m3的水在空气中向右运动时流场压力

    Figure  5.  Pressure profile of the water movement in air while water density is 1 000 kg/m3

    图  6  流场压力细节对比图

    Figure  6.  Detail comparison of pressure profile

    图  7  密度10 kg/m3的水在空气中向右运动时流场密度

    Figure  7.  Density profile of the water movement in air while water density is 10 kg/m3

    图  8  密度10 kg/m3的水在空气中向右运动时流场速度

    Figure  8.  Velocity profile of the water movement in air while water density is 10 kg/m3

    图  9  密度10 kg/m3的水在空气中向右运动时流场压力

    Figure  9.  Pressure profile of the water movement in air while water density is 10 kg/m3

    图  10  流场压力细节对比图

    Figure  10.  Detail comparison of pressure profile

    图  11  水密度1 000 kg/m3时激波与水/气界面相互作用后的流场密度

    Figure  11.  Density profile of shock impact with water-gas interface while water density is 1 000 kg/m3

    图  12  水密度1 000 kg/m3时激波与水/气界面相互作用后的流场速度

    Figure  12.  Velocity profile of shock impact with water-gas interface while water density is 1 000 kg/m3

    图  13  水密度1 000 kg/m3时激波与水/气界面相互作用后的流场压力

    Figure  13.  Pressure profile of shock impact with water-gas interface while water density is 1 000 kg/m3

    图  14  流场压力细节对比图

    Figure  14.  Detail comparison of pressure profile

    图  15  水密度10 kg/m3时激波与水/气界面相互作用后的流场密度

    Figure  15.  Density profile of shock impact with water-gas interface while water density is 10 kg/m3

    图  16  水密度10 kg/m3时激波与水/气界面相互作用后的流场速度

    Figure  16.  Velocity profile of shock impact with water-gas interface while water density is 10 kg/m3

    图  17  水密度10 kg/m3时激波与水/气界面相互作用后的流场压力

    Figure  17.  Pressure profile of shock impact with water-gas interface while water density is 10 kg/m3

    图  18  流场压力细节对比图

    Figure  18.  Detail comparison of pressure profile

  • [1] Caiden R, Fedkiw R P, Anderson C. A numerical method for two-phase flow consisting of separate compressible and incompressible regionsg[J]. Journal of Computational Physics, 2001, 166(1): 1-27.
    [2] Fedkiw R P, Aslam T, Merriman B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows: The ghost fluid method[J]. Journal of Computational Physics, 1999, 152(2): 457-492.
    [3] Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. Journal of Computational Physics, 2003, 190(2): 651-681.
    [4] Liu T G, Khoo B C, Wang C W. The ghost fluid method for gas-water simulation[J]. Journal of Computational Physics, 2005, 204(1): 193-221.
    [5] Wang C W, Liu T G, Khoo B C. A real ghost fluid method for the simulation of multimedium compressible flow[J]. SIAM Journal on Scientific Computing, 2006, 28(1): 278-302.
    [6] 王春武, 赵宁.基于求解Riemann问题的界面处理方法[J].计算物理, 2006, 22(4): 306-310.

    Wang Chun-wu, Zhao Ning. An interface treating method based on Riemann problems[J]. Chinese Journal of Computational Physics, 2006, 22(4): 306-310.
    [7] Agemi R. The incompressible limit of compressible fluid motion in a bounded domain[C]∥Proceedings of the Japan Academy Series A: Mathematical Sciences. 1981.
    [8] Steve S. The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit[J]. Communications in Mathematical Physics, 1986, 104(1): 49-75.
    [9] Asano K. On the incompressible limit of the compressible Euler equation[J]. Japan Journal of Applied Mathematics, 1987, 4(3): 455-488.
    [10] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. http://www.sciencedirect.com/science/article/pii/S0021999196901308
  • 加载中
图(18)
计量
  • 文章访问数:  4234
  • HTML全文浏览量:  594
  • PDF下载量:  692
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-14
  • 修回日期:  2014-02-28
  • 刊出日期:  2015-05-25

目录

    /

    返回文章
    返回