Buckling and energy absorption properties of thin-walled corrugated tubes under axial impacting
-
摘要: 在方管的基础上引入折纹结构, 利用几何关系建立折纹管的折角公式。采用LS-DYNA软件研究了6种折纹管在轴向冲击下的屈曲模态与能量吸收性能, 并与方管进行对比分析。结果表明, 折纹管在冲击载荷作用下屈曲变形过程可分为3个阶段, 初始峰值阶段、稳定渐进屈曲阶段和密实化阶段。折角是影响初始峰值载荷和平均载荷的重要因素之一, 折纹结构的引入有效的降低了初始峰值载荷, 减小了冲击力的波动幅度; 折纹管的比吸能低于方管, 但是在特定折角下, 折纹管的压缩力效率和比总体效率高于方管。Abstract: The square tube with pre-designed corrugations shape is presented and the folding angles formula of the corrugated tubes is established in this study base on geometrical relationship.Buckling modes and energy absorption of square tube and six kinds of corrugated tubes under axial impacting are compared and analyzed by LS-DYNA.The simulation result shows that deformation of tubes can be divided into three stages, including the initial peak stage, the stable progress buckling stage and the densification stage.The folding angle is one of important influence factors on the initial peak force and mean force.The pre-designed corrugations demonstrate some obvious advantages at reducing initial peak force and the fluctuation range of impact force curves which are smoother than the square tube.In addition, the specific energy absorption of the corrugated tubes are lower than the square tube, while the crush force efficiency and specific total efficiency of corrugated tube with a certain folding angle are higher than those of the square tube.
-
Key words:
- solid mechanics /
- buckling mode /
- impact loading /
- energy absorption /
- corrugated tube
-
表 1 方管和折纹管结构的几何尺寸
Table 1. Geometric dimensions of square tube and different corrugated tubes
类型 实验编号 2a1/mm 2a2/mm c/mm H/mm L/mm θ/(°) 方管 ST 60 - - - 160 - 折纹管 CTN1 60 0 5 20 160 97.05 折纹管 CTN2 60 10 5 20 160 109.47 折纹管 CTN3 60 20 5 20 160 124.12 折纹管 CTN4 60 30 5 20 160 141.06 折纹管 CTN5 60 40 5 20 160 159.95 折纹管 CTN6 60 50 5 20 160 180.00 -
[1] 张雄.轻质薄壁结构耐撞性分析与设计优化[D].大连: 大连理工大学, 2007. [2] 余同希, 邱信明.冲击动力学[M].北京: 清华大学出版社, 2011: 200-204. [3] Abramowicz W, Jones N. Dynamic axial crushing of square tubes[J]. International Journal of Impact Engineering, 1984, 2(2): 179-208. http://www.sciencedirect.com/science/article/pii/0734743X84900058 [4] Karagiozova D, Jones N. Dynamic effects on buckling and energy absorption of cylindrical shells under axial impact[J]. Thin-Walled Structures, 2001, 39(7): 583-610. http://www.sciencedirect.com/science/article/pii/S0263823101000155 [5] Rossi A, Fawaz Z, Behdinan K. Numerical simulation of the axial collapse of thin-walled polygonal section tubes[J]. Thin-Walled Structures, 2005, 43(10): 1646-1661. http://www.sciencedirect.com/science/article/pii/S0263823105000467 [6] Mamalis A G, Manolakos D E, Loannidis M B, et al. Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section[J]. Thin-Walled Structures, 2003, 41(10): 891-900. http://www.sciencedirect.com/science?_ob=ArticleURL&md5=9d8f840b5e92f34cd9d0bffd040a9c8b&_udi=B6V59-48KVGCS-2&_user=1492051&_coverDate=10%2F31%2F2003&_rdoc=1&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%235781%232003%23 [7] Langseth M, Hopperstad O S, Berstad T. Crashworthiness of aluminium extrusions: Validation of numerical simulation, effect of mass ratio and impact velocity[J]. International Journal of Impact Engineering, 1999, 22(9/10): 829-854. http://www.sciencedirect.com/science/article/pii/S0734743X98000700 [8] Zhang Xiong, Cheng Geng-dong, You Zhong, et al. Energy absorption of axially compressed thin-walled square tubes with patterns[J]. Thin-Walled Structures, 2007, 45(9): 737-746. http://www.sciencedirect.com/science/article/pii/S0263823107001462 [9] 王博, 骆洪志, 牟超, 等.折痕式能量吸收管的性能分析与优化设计[C]∥中国力学大会暨钱学森诞辰100周年纪念大会.北京: 中国力学学会, 2011: 62-431.