含随机填充孔圆形蜂窝结构的面内冲击性能

何强 马大为 张震东

何强, 马大为, 张震东. 含随机填充孔圆形蜂窝结构的面内冲击性能[J]. 爆炸与冲击, 2015, 35(3): 401-408. doi: 10.11883/1001-1455-(2015)03-0401-08
引用本文: 何强, 马大为, 张震东. 含随机填充孔圆形蜂窝结构的面内冲击性能[J]. 爆炸与冲击, 2015, 35(3): 401-408. doi: 10.11883/1001-1455-(2015)03-0401-08
He Qiang, Ma Da-wei, Zhang Zhen-dong. In-plane impact behavior of circular honeycomb structures randomly filled with rigid inclusions[J]. Explosion And Shock Waves, 2015, 35(3): 401-408. doi: 10.11883/1001-1455-(2015)03-0401-08
Citation: He Qiang, Ma Da-wei, Zhang Zhen-dong. In-plane impact behavior of circular honeycomb structures randomly filled with rigid inclusions[J]. Explosion And Shock Waves, 2015, 35(3): 401-408. doi: 10.11883/1001-1455-(2015)03-0401-08

含随机填充孔圆形蜂窝结构的面内冲击性能

doi: 10.11883/1001-1455-(2015)03-0401-08
详细信息
    作者简介:

    何强(1989—), 男, 博士研究生, 18260098162@163.com

  • 中图分类号: O347

In-plane impact behavior of circular honeycomb structures randomly filled with rigid inclusions

  • 摘要: 研究多孔材料细观结构与宏观力学性能之间的关系, 建立具有固定相对密度的含随机固体填充孔的圆形蜂窝结构模型。在此模型的基础上具体讨论了不同孔洞填充比和冲击速度对圆形蜂窝结构变形模式、动态冲击平台应力以及能量吸收性能的影响。研究结果表明:填充孔在蜂窝变形过程中有局部牵制作用, 蜂窝材料变形模式仍为准静态模式、过渡模式、动态模式; 当变形模式为过渡模式或动态模式时, 结构的平台应力与速度的平方成线性关系, 存在明显的速度效应; 高速冲击下, 含固体填充孔的蜂窝结构单位质量吸收的能量高于规则蜂窝结构。研究结果可为蜂窝材料的研究和设计提供参考。
  • 图  1  规则圆形蜂窝材料计算模型

    Figure  1.  Calculation model of regular circular honeycombs

    图  2  圆形蜂窝材料变形轮廓图

    Figure  2.  Deformation profile of circular honeycomb

    图  3  圆形蜂窝结构的变形模式

    Figure  3.  Deformation mode of the circular honeycomb

    图  4  冲击速度对平台应力的影响

    Figure  4.  Effect of impact velocity on the plateau stress of honeycombs

    图  5  低速冲击下圆形蜂窝上材料冲击端动态响应曲线

    Figure  5.  Dynamic response curve of circular honeycomb at the crushing end

    图  6  固体填充孔对y方向相对平台应力的影响

    Figure  6.  Effect of solid inclusions on the relative plateau stress in y direction

    图  7  不同冲击速度下蜂窝结构单位质量吸收能量

    Figure  7.  Energy absorption of honeycombs structures at different impact velocities

    表  1  含随机固体填充孔蜂窝结构参数

    Table  1.   Parameters of honeycombs with randomly arranged solid inclusions

    α t/mm ρe/(g·cm-3)
    0.02 0.125 33.106
    0.04 0.096 42.650
    0.06 0.066 61.490
    0.08 0.036 114.130
    下载: 导出CSV

    表  2  平台应力拟合关系式中的系数

    Table  2.   Coefficients in fitting equation of plateau stress

    α a1/MPa a2/(Pa·s2·m-2)
    0.00 0.086 0.238
    0.02 0.071 0.244
    0.04 0.055 0.252
    0.06 0.043 0.260
    下载: 导出CSV
  • [1] Gibson L J, Ashby M F. Cellular solids: structure and properties[M]. 2nd ed, Cambridge: Cambridge University Press, 1997: 93-147.
    [2] 卢天健, 何德坪, 陈常青, 等.超轻多孔金属材料的多功能特性及应用[J].力学进展, 2006, 36(4): 517-535. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz200604004

    Lu Tian-jian, He De-ping, Chen Chang-qing, et al. The multi-functionality of ultra-light porous metals and their applications[J]. Advances in Mechanics, 2006, 36(4): 517-535. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz200604004
    [3] Jeon I, Asahina T. The effect of structural defects on the compressive behavior of closed-cell A1 foam[J]. Acta Materialia, 2005, 53: 3415-3423. http://www.sciencedirect.com/science/article/pii/S1359645405002089
    [4] Kepets M, Lu T J, Dowling A P. Modeling of the role of defects in sintered FeCr Al Y foams[J]. Acta Mechanica Sinica, 2007, 23(5): 511-529. http://d.wanfangdata.com.cn/Periodical/lxxb-e200704005
    [5] Prakash O, Bichebois P, Brechet Y, et al. A note on the deformation behaviour of two-dimensional model cellular structures[J]. Philosophical Magazine A: Physics of Condensed Matter Structure Defects and Mechanical Properties, 1996, 73: 739-751. doi: 10.1080/01418619608242994
    [6] Chen C, Lu T J, Fleck N A. Effect of inclusions and holes on the stiffness and strength of honeycombs[J]. International Journal of Mechanical Sciences, 2001, 43(2): 487-504. http://www.sciencedirect.com/science/article/pii/S0020740399001228
    [7] Nakamoto H, Adachi T, Araki W. In-plane impact behavior of honeycomb structures randomly filled with rigid inclusions[J]. International Journal of Impact Engineering, 2009, 36(1): 73-80. http://www.sciencedirect.com/science/article/pii/S0734743X08000675
    [8] Nakamoto H, Adachi T, Araki W. In-plane impact behavior of honeycomb structures filled with linearly arranged inclusions[J]. International Journal of Impact Engineering, 2009, 36(8): 1019-1026. http://www.sciencedirect.com/science/article/pii/S0734743X09000281
    [9] Sun De-qiang, Zhang Wei-hong. In-plane crushing and energy absorption performance of multi-layer regularly arranged circular honeycombs[J]. Composite Structures, 2013, 96: 726-735. http://www.sciencedirect.com/science/article/pii/S0263822312004837
    [10] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminum foams: PartⅠ: Experimental data and observations[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174-2205. http://www.ingentaconnect.com/content/el/00225096/2005/00000053/00000010/art00002
    [11] Reid S R, Peng C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5/6): 531-570. http://www.sciencedirect.com/science/article/pii/S0734743X9700016X
    [12] Kooistra G W, Deshpande V S, Wadley H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminum[J]. Acta Materialia, 2004, 52(14): 4229-4237. http://www.sciencedirect.com/science/article/pii/S1359645404003131
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2840
  • HTML全文浏览量:  411
  • PDF下载量:  518
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-17
  • 修回日期:  2014-02-21
  • 刊出日期:  2015-05-25

目录

    /

    返回文章
    返回