• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

综合考虑宏细观缺陷的岩体动态损伤本构模型

张力民 吕淑然 刘红岩

张力民, 吕淑然, 刘红岩. 综合考虑宏细观缺陷的岩体动态损伤本构模型[J]. 爆炸与冲击, 2015, 35(3): 428-436. doi: 10.11883/1001-1455-(2015)03-0428-09
引用本文: 张力民, 吕淑然, 刘红岩. 综合考虑宏细观缺陷的岩体动态损伤本构模型[J]. 爆炸与冲击, 2015, 35(3): 428-436. doi: 10.11883/1001-1455-(2015)03-0428-09
Zhang Li-min, Lü Shu-ran, Liu Hong-yan. A dynamic damage constitutive model of rock mass by comprehensively considering macroscopic and mesoscopic flaws[J]. Explosion And Shock Waves, 2015, 35(3): 428-436. doi: 10.11883/1001-1455-(2015)03-0428-09
Citation: Zhang Li-min, Lü Shu-ran, Liu Hong-yan. A dynamic damage constitutive model of rock mass by comprehensively considering macroscopic and mesoscopic flaws[J]. Explosion And Shock Waves, 2015, 35(3): 428-436. doi: 10.11883/1001-1455-(2015)03-0428-09

综合考虑宏细观缺陷的岩体动态损伤本构模型

doi: 10.11883/1001-1455-(2015)03-0428-09
基金项目: 国家自然科学基金项目(41002113, 41162009);教育部科学技术研究重点项目(211175)
详细信息
    作者简介:

    张力民(1970—), 男, 博士

    通讯作者:

    刘红岩, lhyan1204@126.com

  • 中图分类号: O383;TJ410.33

A dynamic damage constitutive model of rock mass by comprehensively considering macroscopic and mesoscopic flaws

  • 摘要: 针对节理岩体同时含有节理、裂隙等宏观缺陷及微裂隙、微孔洞等细观缺陷的客观事实, 提出了在节理岩体动态损伤本构模型中应同时考虑宏细观缺陷的观点。为此, 首先对基于细观动态断裂机理的经典岩石动态损伤本构模型—TCK(Taylor-Chen-Kuszmaul)模型进行了阐述, 其次基于Lemaitre等效应变假设推导了综合考虑宏细观缺陷的复合损伤变量(张量), 进而在此基础上建立了相应的节理岩体动态损伤本构模型, 并利用该模型讨论了载荷应变率及节理条数对岩体动态力学特性的影响规律。结果表明, 在不同载荷应变率下试件在变形初始阶段是重合的, 而后随着应变的增加, 试件峰值强度、峰值应变及总应变均随载荷应变率的增加而增加; 随着节理条数的增加, 试件峰值强度逐渐降低, 但降低趋势逐渐变缓并趋于某一定值。上述研究结论与目前的理论及实验研究结果的基本规律是一致的, 说明了本模型的合理性。
  • 图  1  应变等效计算示意图

    Figure  1.  Calculation of the equivalent strain

    图  2  耦合损伤变量随宏细观损伤变量变化规律

    Figure  2.  Change law of the coupled damage variable varied with macroscopic and mesoscopic damage

    图  3  含裂隙岩体的受力模型

    Figure  3.  Mechanical model of cracked rock mass

    图  4  岩石试件二维计算模型

    Figure  4.  Two-dimensional calculation model of rock

    图  5  岩体单轴压缩动态应力应变曲线

    Figure  5.  Stress-strain curves of rock under axial dynamic compression

    图  6  不同应变率下试件动态应力随应变变化关系

    Figure  6.  Relation between dynamic stress of rock varied with strain under different load strain rates

    图  7  1~4条平行节理试件应力应变曲线

    Figure  7.  Stress-strain curves of the jointed rock mass with 1~4 parallel joints

  • [1] Budiansky B, O'Connell R J. Elastic moduli of a cracked solid[J]. International Journal of Solids Structures, 1976, 12(2): 81-97.
    [2] Grady D E, Kipp M L. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences, 1980, 17(3): 174-157.
    [3] Taylor L M, Chen E P, Kuszmaul J S. Microcrack induced damage accumulation in brittle rock under dynamic loading[J]. Computer Method in Applied Mechanics & Engineering, 1986, 55(3): 301-320. http://adsabs.harvard.edu/abs/1986cmame..55..301t
    [4] Zuo Q H, Disilvestro D, Richter J D. A crack-mechanics based model for damage and plasticity of brittle materials under dynamic loading[J]. International Journal of Solids and Structures, 2010, 47(2): 2790-2798.
    [5] Zhou X P, Yang H Q. Micromechanical modeling of dynamic compressive responses of mesoscopic heterogenous brittle rock[J]. Theoretical and Applied Fracture Mechanics, 2007, 48(1): 1-20. http://www.sciencedirect.com/science/article/pii/S0167844207000250
    [6] Wang Zhi-liang. Li Yong-chi, Wang J G. A damage-softening statistical constitutive model considering rock residual strength[J]. Computers & Geosciences, 2007, 33(1): 1-9. http://dl.acm.org/citation.cfm?id=1219235
    [7] Tang C A, Liu H, Lee P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression: PartⅠ: Effect of heterogeneity[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37(4): 555-569.
    [8] Li Jian-chun, Ma Guo-wei, Zhao Jian. An equivalent viscoelastic model for rock mass with parallel joints[J]. Journal of Geophysical Research, 2010, 115(B3): 1-10. http://www.onacademic.com/detail/journal_1000035646969810_4cf6.html
    [9] 李宁, 张平, 段庆伟, 等.裂隙岩体的细观动力损伤模型[J].岩石力学与工程学报, 2002, 21(11): 1579-1584.

    Li Ning, Zhang Ping, Duan Qing-wei, et al. Dynamic meso-damage model of jointed rockmass[J]. Chinese Journal of Rock Mechancis and Engineering, 2002, 21(11): 1579-1584.
    [10] 刘红岩, 邢闯锋, 刘冶, 等.宏微观缺陷对岩体力学特性影响规律试验研究[J].自然灾害学报, 2013, 2(5): 134-139. http://www.cqvip.com/QK/97398X/201305/47613345.html

    Liu Hong-yan, Xing Chuang-feng, Liu Ye, et al. Test study on the law of macro and micro flaws effects on the mechanical properties of rockmass[J]. Journal of Natural Disaster, 2013, 2(5): 134-139. http://www.cqvip.com/QK/97398X/201305/47613345.html
    [11] 杨更社, 谢定义.岩体宏观细观损伤的耦合计算分析[C]∥第六次全国岩石力学与工程学术大会论文集.武汉, 2000: 327-329.
    [12] Grady D E, Kipp M E. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 17(3): 147-157.
    [13] Grady D E, Kipp M E. The micromechanics of impact fracture of rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 293-302. http://www.sciencedirect.com/science/article/pii/0148906279902407
    [14] Kyoya T, Ichikawa Y, Kawamoto T. A damage mechanics theory for discontinuous rock mass[C]∥Proceedings of the 5th International Conference on Numerical Methods in Geomechanics. Nagoya, Japan, 1985: 469-480.
    [15] Kawamoto T, Ichikawa Y, Kyoya T. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(4): 1-30. doi: 10.1002/nag.1610120102/full
    [16] 孙卫军, 周维垣.裂隙岩体弹塑性-损伤本构模型[J].岩石力学与工程学报, 1990, 2(9): 108-119.

    Sun Wei-jun, Zhou Wei-yuan. An Elasto-plastic damage mechanics constitutive model for jointed rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 1990, 2(9): 108-119.
    [17] Lemaitre J. A course on damage mechanics[M]. Spring-Verlag, 1996.
    [18] 刘红岩, 吕淑然, 丹增卓玛, 等.节理岩体宏微观损伤耦合的三维本构模型研究[J].水利与工程学报, 2013, 11(3): 85-88. http://www.cqvip.com/QK/97660A/201303/45951673.html

    Liu Hong-yan, LüShu-ran, Danzeng Zhuo-ma, et al. Study on 3-D constitutive model for jointed rock mass by coupling macroscopic and microscopic damge[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(3): 85-88. http://www.cqvip.com/QK/97660A/201303/45951673.html
    [19] 于亚伦.用三轴SHPB装置研究岩石的动载特性[J].岩土工程学报, 1992, 14(3): 76-79.

    Yu Ya-lun. Study on the dynamic characteristic of rock by tri-axial SHPB[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(3): 76-79.
  • 期刊类型引用(16)

    1. 何风贞,李桂臣,阚甲广,许兴亮,冯晓巍,孙元田. 岩石多尺度损伤研究进展. 煤炭科学技术. 2024(10): 33-53 . 百度学术
    2. 吕思清,朱杰兵,汪斌,祝永锁. 冻融荷载耦合作用下含开口裂隙砂岩宏细观损伤模型研究. 岩石力学与工程学报. 2023(05): 1124-1135 . 百度学术
    3. 刘汉松,陈思凯,薛新凯. 考虑断裂韧度劣化的非贯通节理岩体损伤模型研究. 江西建材. 2023(08): 203-206+209 . 百度学术
    4. 王磊,王远鹏,秦越,苏宏明. 含初始损伤冻结砂岩动态破坏机理及损伤本构关系. 长江科学院院报. 2022(09): 84-89+95 . 百度学术
    5. 张雨霏,李建春,闫亚涛,李海波. 基于SHPB试验的粗糙节理面动态损伤特征研究. 岩土力学. 2021(02): 491-500 . 百度学术
    6. 陈松,乔春生,叶青,冀少鹏. 冻融荷载下节理岩体的复合损伤模型. 哈尔滨工业大学学报. 2019(02): 100-108 . 百度学术
    7. 邓正定,向帅,周尖荣,王观石,王月梅. 非贯通裂隙岩体损伤演化率相关性及变形特征. 爆炸与冲击. 2019(08): 118-129 . 本站查看
    8. 刘红岩,李俊峰,裴小龙. 单轴压缩下断续节理岩体动态损伤本构模型. 爆炸与冲击. 2018(02): 316-323 . 本站查看
    9. 陈松,乔春生,叶青,邓斌. 基于摩尔-库仑准则的断续节理岩体复合损伤本构模型. 岩土力学. 2018(10): 3612-3622 . 百度学术
    10. 王建国,李克钢,张智宇,雷振,杨阳,郭延辉. 低速冲击下平行节理岩石能量传递及动力学特性. 湖南大学学报(自然科学版). 2018(S1): 14-19 . 百度学术
    11. Liuke Huang,Jianjun Liu,Youjun Ji,Xiaoping Gong,Liangkai Qin. A review of multiscale expansion of low permeability reservoir cracks. Petroleum. 2018(02): 115-125 . 必应学术
    12. 王建国,郭延辉,张小华,徐培良,杨德源. 冲击荷载下节理数对类岩石动力学特性的影响. 地下空间与工程学报. 2017(S2): 559-564 . 百度学术
    13. 陈帅志,赵勇,雷尹嘉,肖成龙. 含缺陷材料冲击断裂的动态焦散线试验研究. 科学技术与工程. 2017(23): 137-141 . 百度学术
    14. 杨仁树,丁晨曦,杨立云,王雁冰,许鹏. 节理对爆生裂纹扩展影响的试验研究. 振动与冲击. 2017(10): 26-30+44 . 百度学术
    15. 刘红岩,杨艳,李俊峰,张力民. 基于TCK模型的非贯通节理岩体动态损伤本构模型. 爆炸与冲击. 2016(03): 319-325 . 本站查看
    16. 高红梅,兰永伟,陈勇,李长凤. 加温过程中缺陷花岗岩的耦合损伤. 黑龙江科技大学学报. 2016(04): 429-432 . 百度学术

    其他类型引用(21)

  • 加载中
图(7)
计量
  • 文章访问数:  2942
  • HTML全文浏览量:  404
  • PDF下载量:  529
  • 被引次数: 37
出版历程
  • 收稿日期:  2013-10-30
  • 修回日期:  2013-12-20
  • 刊出日期:  2015-05-25

目录

    /

    返回文章
    返回