综合考虑宏细观缺陷的岩体动态损伤本构模型

张力民 吕淑然 刘红岩

张力民, 吕淑然, 刘红岩. 综合考虑宏细观缺陷的岩体动态损伤本构模型[J]. 爆炸与冲击, 2015, 35(3): 428-436. doi: 10.11883/1001-1455-(2015)03-0428-09
引用本文: 张力民, 吕淑然, 刘红岩. 综合考虑宏细观缺陷的岩体动态损伤本构模型[J]. 爆炸与冲击, 2015, 35(3): 428-436. doi: 10.11883/1001-1455-(2015)03-0428-09
Zhang Li-min, Lü Shu-ran, Liu Hong-yan. A dynamic damage constitutive model of rock mass by comprehensively considering macroscopic and mesoscopic flaws[J]. Explosion And Shock Waves, 2015, 35(3): 428-436. doi: 10.11883/1001-1455-(2015)03-0428-09
Citation: Zhang Li-min, Lü Shu-ran, Liu Hong-yan. A dynamic damage constitutive model of rock mass by comprehensively considering macroscopic and mesoscopic flaws[J]. Explosion And Shock Waves, 2015, 35(3): 428-436. doi: 10.11883/1001-1455-(2015)03-0428-09

综合考虑宏细观缺陷的岩体动态损伤本构模型

doi: 10.11883/1001-1455-(2015)03-0428-09
基金项目: 国家自然科学基金项目(41002113, 41162009);教育部科学技术研究重点项目(211175)
详细信息
    作者简介:

    张力民(1970—), 男, 博士

    通讯作者:

    刘红岩, lhyan1204@126.com

  • 中图分类号: O383;TJ410.33

A dynamic damage constitutive model of rock mass by comprehensively considering macroscopic and mesoscopic flaws

  • 摘要: 针对节理岩体同时含有节理、裂隙等宏观缺陷及微裂隙、微孔洞等细观缺陷的客观事实, 提出了在节理岩体动态损伤本构模型中应同时考虑宏细观缺陷的观点。为此, 首先对基于细观动态断裂机理的经典岩石动态损伤本构模型—TCK(Taylor-Chen-Kuszmaul)模型进行了阐述, 其次基于Lemaitre等效应变假设推导了综合考虑宏细观缺陷的复合损伤变量(张量), 进而在此基础上建立了相应的节理岩体动态损伤本构模型, 并利用该模型讨论了载荷应变率及节理条数对岩体动态力学特性的影响规律。结果表明, 在不同载荷应变率下试件在变形初始阶段是重合的, 而后随着应变的增加, 试件峰值强度、峰值应变及总应变均随载荷应变率的增加而增加; 随着节理条数的增加, 试件峰值强度逐渐降低, 但降低趋势逐渐变缓并趋于某一定值。上述研究结论与目前的理论及实验研究结果的基本规律是一致的, 说明了本模型的合理性。
  • 图  1  应变等效计算示意图

    Figure  1.  Calculation of the equivalent strain

    图  2  耦合损伤变量随宏细观损伤变量变化规律

    Figure  2.  Change law of the coupled damage variable varied with macroscopic and mesoscopic damage

    图  3  含裂隙岩体的受力模型

    Figure  3.  Mechanical model of cracked rock mass

    图  4  岩石试件二维计算模型

    Figure  4.  Two-dimensional calculation model of rock

    图  5  岩体单轴压缩动态应力应变曲线

    Figure  5.  Stress-strain curves of rock under axial dynamic compression

    图  6  不同应变率下试件动态应力随应变变化关系

    Figure  6.  Relation between dynamic stress of rock varied with strain under different load strain rates

    图  7  1~4条平行节理试件应力应变曲线

    Figure  7.  Stress-strain curves of the jointed rock mass with 1~4 parallel joints

  • [1] Budiansky B, O'Connell R J. Elastic moduli of a cracked solid[J]. International Journal of Solids Structures, 1976, 12(2): 81-97.
    [2] Grady D E, Kipp M L. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences, 1980, 17(3): 174-157.
    [3] Taylor L M, Chen E P, Kuszmaul J S. Microcrack induced damage accumulation in brittle rock under dynamic loading[J]. Computer Method in Applied Mechanics & Engineering, 1986, 55(3): 301-320. http://adsabs.harvard.edu/abs/1986cmame..55..301t
    [4] Zuo Q H, Disilvestro D, Richter J D. A crack-mechanics based model for damage and plasticity of brittle materials under dynamic loading[J]. International Journal of Solids and Structures, 2010, 47(2): 2790-2798.
    [5] Zhou X P, Yang H Q. Micromechanical modeling of dynamic compressive responses of mesoscopic heterogenous brittle rock[J]. Theoretical and Applied Fracture Mechanics, 2007, 48(1): 1-20. http://www.sciencedirect.com/science/article/pii/S0167844207000250
    [6] Wang Zhi-liang. Li Yong-chi, Wang J G. A damage-softening statistical constitutive model considering rock residual strength[J]. Computers & Geosciences, 2007, 33(1): 1-9. http://dl.acm.org/citation.cfm?id=1219235
    [7] Tang C A, Liu H, Lee P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression: PartⅠ: Effect of heterogeneity[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37(4): 555-569.
    [8] Li Jian-chun, Ma Guo-wei, Zhao Jian. An equivalent viscoelastic model for rock mass with parallel joints[J]. Journal of Geophysical Research, 2010, 115(B3): 1-10. http://www.onacademic.com/detail/journal_1000035646969810_4cf6.html
    [9] 李宁, 张平, 段庆伟, 等.裂隙岩体的细观动力损伤模型[J].岩石力学与工程学报, 2002, 21(11): 1579-1584.

    Li Ning, Zhang Ping, Duan Qing-wei, et al. Dynamic meso-damage model of jointed rockmass[J]. Chinese Journal of Rock Mechancis and Engineering, 2002, 21(11): 1579-1584.
    [10] 刘红岩, 邢闯锋, 刘冶, 等.宏微观缺陷对岩体力学特性影响规律试验研究[J].自然灾害学报, 2013, 2(5): 134-139. http://www.cqvip.com/QK/97398X/201305/47613345.html

    Liu Hong-yan, Xing Chuang-feng, Liu Ye, et al. Test study on the law of macro and micro flaws effects on the mechanical properties of rockmass[J]. Journal of Natural Disaster, 2013, 2(5): 134-139. http://www.cqvip.com/QK/97398X/201305/47613345.html
    [11] 杨更社, 谢定义.岩体宏观细观损伤的耦合计算分析[C]∥第六次全国岩石力学与工程学术大会论文集.武汉, 2000: 327-329.
    [12] Grady D E, Kipp M E. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 17(3): 147-157.
    [13] Grady D E, Kipp M E. The micromechanics of impact fracture of rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 293-302. http://www.sciencedirect.com/science/article/pii/0148906279902407
    [14] Kyoya T, Ichikawa Y, Kawamoto T. A damage mechanics theory for discontinuous rock mass[C]∥Proceedings of the 5th International Conference on Numerical Methods in Geomechanics. Nagoya, Japan, 1985: 469-480.
    [15] Kawamoto T, Ichikawa Y, Kyoya T. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(4): 1-30. doi: 10.1002/nag.1610120102/full
    [16] 孙卫军, 周维垣.裂隙岩体弹塑性-损伤本构模型[J].岩石力学与工程学报, 1990, 2(9): 108-119.

    Sun Wei-jun, Zhou Wei-yuan. An Elasto-plastic damage mechanics constitutive model for jointed rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 1990, 2(9): 108-119.
    [17] Lemaitre J. A course on damage mechanics[M]. Spring-Verlag, 1996.
    [18] 刘红岩, 吕淑然, 丹增卓玛, 等.节理岩体宏微观损伤耦合的三维本构模型研究[J].水利与工程学报, 2013, 11(3): 85-88. http://www.cqvip.com/QK/97660A/201303/45951673.html

    Liu Hong-yan, LüShu-ran, Danzeng Zhuo-ma, et al. Study on 3-D constitutive model for jointed rock mass by coupling macroscopic and microscopic damge[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(3): 85-88. http://www.cqvip.com/QK/97660A/201303/45951673.html
    [19] 于亚伦.用三轴SHPB装置研究岩石的动载特性[J].岩土工程学报, 1992, 14(3): 76-79.

    Yu Ya-lun. Study on the dynamic characteristic of rock by tri-axial SHPB[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(3): 76-79.
  • 加载中
图(7)
计量
  • 文章访问数:  2899
  • HTML全文浏览量:  384
  • PDF下载量:  527
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-30
  • 修回日期:  2013-12-20
  • 刊出日期:  2015-05-25

目录

    /

    返回文章
    返回