Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

综合考虑宏细观缺陷的岩体动态损伤本构模型

张力民 吕淑然 刘红岩

张力民, 吕淑然, 刘红岩. 综合考虑宏细观缺陷的岩体动态损伤本构模型[J]. 爆炸与冲击, 2015, 35(3): 428-436. doi: 10.11883/1001-1455-(2015)03-0428-09
引用本文: 张力民, 吕淑然, 刘红岩. 综合考虑宏细观缺陷的岩体动态损伤本构模型[J]. 爆炸与冲击, 2015, 35(3): 428-436. doi: 10.11883/1001-1455-(2015)03-0428-09
Zhang Li-min, Lü Shu-ran, Liu Hong-yan. A dynamic damage constitutive model of rock mass by comprehensively considering macroscopic and mesoscopic flaws[J]. Explosion And Shock Waves, 2015, 35(3): 428-436. doi: 10.11883/1001-1455-(2015)03-0428-09
Citation: Zhang Li-min, Lü Shu-ran, Liu Hong-yan. A dynamic damage constitutive model of rock mass by comprehensively considering macroscopic and mesoscopic flaws[J]. Explosion And Shock Waves, 2015, 35(3): 428-436. doi: 10.11883/1001-1455-(2015)03-0428-09

综合考虑宏细观缺陷的岩体动态损伤本构模型

doi: 10.11883/1001-1455-(2015)03-0428-09
基金项目: 国家自然科学基金项目(41002113, 41162009);教育部科学技术研究重点项目(211175)
详细信息
    作者简介:

    张力民(1970—), 男, 博士

    通讯作者:

    刘红岩, lhyan1204@126.com

  • 中图分类号: O383;TJ410.33

A dynamic damage constitutive model of rock mass by comprehensively considering macroscopic and mesoscopic flaws

  • 摘要: 针对节理岩体同时含有节理、裂隙等宏观缺陷及微裂隙、微孔洞等细观缺陷的客观事实, 提出了在节理岩体动态损伤本构模型中应同时考虑宏细观缺陷的观点。为此, 首先对基于细观动态断裂机理的经典岩石动态损伤本构模型—TCK(Taylor-Chen-Kuszmaul)模型进行了阐述, 其次基于Lemaitre等效应变假设推导了综合考虑宏细观缺陷的复合损伤变量(张量), 进而在此基础上建立了相应的节理岩体动态损伤本构模型, 并利用该模型讨论了载荷应变率及节理条数对岩体动态力学特性的影响规律。结果表明, 在不同载荷应变率下试件在变形初始阶段是重合的, 而后随着应变的增加, 试件峰值强度、峰值应变及总应变均随载荷应变率的增加而增加; 随着节理条数的增加, 试件峰值强度逐渐降低, 但降低趋势逐渐变缓并趋于某一定值。上述研究结论与目前的理论及实验研究结果的基本规律是一致的, 说明了本模型的合理性。
  • 当冲击作用于不同密度或不同可压缩性2种物质的扰动界面时产生Richtmyer-Meshkov不稳定性(RMI)。这种不稳定性理论上由Richtmyer发现并描述[1], 由Meshkov从实验中证实[2]。该界面不稳定性问题在许多自然现象及科学和工程领域中起着重要作用[3-8], 如超新星爆炸、磁化等离子体、磁约束、太阳磁化层、地下盐矿、火山岛及外壳与内部流体混合导致中子收益降低的激光驱动惯性约束聚变和冲击波与火焰相互作用导致的爆燃转爆轰等。此外, RMI也可能从受冲击的金属表面产生喷射物。

    RMI的演化通常经历由不稳定模式的振幅hk和波长λ=2π/k描绘的若干阶段。对于khk≪1, 扰动随kUt呈正比例增长, U为激波作用后的界面运动速度。当khk达到某一值, 非线性使增长率降低, 驱动模式耦合, 且增长率随着扰动谱宽的增大而减小。然后, 由于尖钉下落(重流体进入轻流体)比气泡上升(轻流体进入重流体)快, 界面变得不对称。对于宽的不稳定谱, 非线性最终导致产生湍流混合层。RMI的脉冲性质令问题复杂, 使得RMI定性上与常见的Rayleigh-Taylor不稳定性(RTI)不同。由于冲击的可压缩性、复杂的物质特性以及后期的非线性运动直至湍流混合, RMI演化的计算是困难的。当然, 随着计算机技术的迅猛发展, 这可以采用多维高分辨率流体力学模拟来进行, 但它们计算强度大, 无法用于工程设计优化研究。因此, 目前实际应用中通常采用捕捉较低分辨率时不稳定流动主要特征的简化“混合模型”[9]。杨玟等[10-11]对此进行了尝试, 将传统的k-ε模型应用于界面不稳定性引起的混合, 取得了令人满意的结果。

    但是, 由于与RMI相关的其它物理过程非常复杂, 较复杂的混合模型(如k-ε)也难以直接应用到工程设计中。目前, 很多实际应用中对RMI诱发混合现象的处理都非常简单, 假设混合层宽度以指数形式tθi增长。而大量实验研究表明该比例关系仍不确定[3-6], 因为考虑压缩性的计算是困难的, 它们与实验不符。即使指数律粗略满足, 但不同工况下θi的差别也很大, 它显著依赖于初始扰动谱。由此可见, 工程设计中对RMI诱发混合现象的处理过于粗糙。

    本文中, 在简单介绍描述作用于混合层中产生的气泡和尖钉的浮阻力模型基础上, 采用该模型对激波管低压缩情况和激光加载高压缩情况下的RMI诱发混合层宽度(气泡与尖钉宽度之和)进行计算, 验证模型和选取参数的有效性。

    目前, 典型的浮阻力模型可写为如下形式[12]:

    (ρi+Caρj)dvi dtβ(ρiρj)a(t)]Vi=Cdρivi|vi|Aii,j=1,2;ij (1)

    式中:下角标i, j表示2种不同的流体,下角标为1时表示重流体(尖钉),为2时表示轻流体(气泡);ρi为重流体/轻流体的密度;vi是尖钉/气泡的渗透速度,且vi=dhi/dthi表示尖钉/气泡的瞬时宽度;Ca是附加质量力系数;β是浮力产生的模型常数;Cd是阻力系数;a(t)为激波脉冲加速度;Vi为尖钉/气泡的体积,Ai为尖钉/气泡的截面积。方程左端第一项为惯性力,第二项为浮力,右端为阻力。关于模型的详细论述可参考文献[13-14],这里不再重复。对于Richtmyer-Meshkov不稳定性,通常认为冲击简单地给予界面上的气泡和尖钉一个脉冲,则它们随后的运动可以由惯性力和阻力相等来得到(加速度为零)。因此脉冲加速度情况是有启发性的,可以用来研究不稳定性的惯性特性。

    本文所求解的模型方程是一组二阶常微分方程, 将它们简化为一阶微分方程:dhi/dt=vi; dvi/dt= -fiCdvi|vi|/hi。采用四阶Runge-Kutta方法进行求解。

    采用上述模型和数值方法, 对关注的激波管低压缩情况和激光加载高压缩情况下模型的性能进行了考察。这2种工况下RMI产生的机理不同:对于弱冲击, 主要贡献来自于压力梯度和密度梯度不重合引起的旋涡沉积; 对于强冲击, 存在激波在经折射后产生了显著的反射, 这产生增长率的振荡, 但它们最终衰减。

    首先采用上述模型对4种不同激波脉冲加速度情况下气泡和尖钉宽度进行了计算。图 1给出了所采用的4种加速度曲线,g为重力加速度。脉冲加速度a约为150g,持续时间t0约为10 ms。这些曲线为LANL的Dimonte等LEM(Linear Electric Motor)实验的测量曲线[15]。实验中流体和脉冲加速度的性质参数见表 1,其中R为密度比,R=(1+A)(1-A),A为Atwood数,A=(ρ2-ρ1)(ρ2+ρ1),We为韦伯数,Re为雷诺数。对于每一种情况,通过调整阻力系数Cd和初始振幅hi0来使随时间变化的解与实验数据相符。但是,数值实验发现:在大多数情况下hi0对结果的影响远小于Cd的影响。

    图  1  计算采用的4种不同脉冲加速度曲线
    Figure  1.  Four kinds of impulsive accelerations used in the calculation
    表  1  实验中采用的流体和脉冲加速度性质参数
    Table  1.  Fluid combinations and characteristics for impusive accerleration experiments
    No. 流体1 流体2 ρ1/(g·cm-3) ρ2/(g·cm-3) R A We Re
    1 H2O CCl2F2 1.000 1.57 1.57 0.22 4 000 2 600
    2 SF6 C4H10 0.067 0.81 12.10 0.85 1 100 8 000
    3 SF6 CCl2F2 0.067 1.57 23.40 0.92 11 000 23 000
    4 SF6 CCl2F2 0.032 1.57 49.10 0.96 6 000 25 000
    下载: 导出CSV 
    | 显示表格

    图 2给出了4种加速度驱动下气泡和尖钉宽度随位移Z的变化, Z=a dtdt, 激波作用时ZUt。由图可见, 4种加速度情况下计算的气泡和尖钉宽度与实验基本吻合。计算中阻力系数Cd的取值为3.67±0.73, 与文献[16]中分析得到的Cd的不确定度1.2接近。从图中还可看出:气泡和尖钉的不对称性随着密度比R的增大而增大。此外, 本文中还对实验结果按指数律hi=hi0tθi进行了拟合, 其中hi0的取值范围为0.5~1.0 cm。R=49.1时, θ1≈0.85, θ2≈0.33; R=23.4时, 指数迅速下降, θ1≈0.45, θ2≈0.24; R=1.57时, θ1≈0.28, θ2≈0.22。由此可见, 指数θi随密度比变化而变化, 但具体变化规律还未从数值模拟和实验中最终确定, 这主要是由于θi对实验初始条件敏感, 需要计算和实验之间更直接的比较。

    图  2  气泡和尖钉宽度随位移的变化
    Figure  2.  The width of bubble and spike with displacement

    为了考察模型在高压缩情况下的性能,我们进一步对Nova激光器上马赫数Ma>10的实验进行了模拟。实验采用一靶丸装置在Nova激光器上进行[17]。流体1由厚度为125 μm、初始密度为1.7 g/cm3的铍烧蚀层组成。流体2是未压缩密度为0.12 g/cm3的泡沫。波速为46 km/s的入射冲击与界面相互作用产生反射稀疏波和速度为3 km/s的透射激波。界面经加速后速度为56 km/s,物质被压缩后,ρ1=2 g/cm3ρ2=0.5 g/cm3A=-0.6。这些参数通过对比热比γ1=1.8和γ2=1.45的流体求解理想的黎曼问题得到。

    图 3给出了Nova实验中计算的加速度曲线。由图可见,激光驱动在4 ns后停止,这导致泡沫减压,由于A < 0而产生Rayleigh-Taylor(RT)分量,因此冲击压缩后流动是亚音速的,本文模型是适用的。图 4给出了混合区总宽度H随位移Z的变化(由于实验不能分辨气泡和尖钉,因此给出了总振幅H)。从图中可看出:混合区总宽度的计算值与实验值吻合,而且Cd=2.0和Cd=5.36的曲线之间包括了全部的实验数据。但是,阻力系数Cd的不确定度约为3.36,明显大于低压缩情况的值(约为1.46)。此外,拟合得到总的混合宽度以指数为0.5的指数律增长,这超过了激波管低压缩时得到的指数,推测其原因可能是:(1)激光驱动随时间减小,使得压力降低、界面减速,这导致扰动膨胀,并引入RT分量(因为Aa>0)。这些影响可能显著增加推测的指数;(2) A=0.6时Nova上的初始扰动比激波管上的更对称,如果指数对初始条件敏感,这可能导致不同的指数。

    图  3  Nova实验中的加速度曲线
    Figure  3.  Acceleration history for Nova experiment
    图  4  混合区宽度随位移的变化
    Figure  4.  Variaion of total width with displacement

    采用浮阻力模型对激波管低压缩和激光加载高压缩情况下Richtmyer-Meshkov不稳定性诱发的物质渗透边界的演化过程进行了计算, 计算结果与实验吻合得较好。这表明本研究中模型参数的选取、方程中现象学比例因子的添加和模型假设是合适的。但是由于实验测量的局限性, 模型中的一些问题仍然是突出的, 包括阻力项的大小和形式、压缩的影响、“附加质量”的描述等。为了更好地评估模型, 需要一些实验上的完善。首先, 气泡和尖钉必须单独分辨, 因为它们的表现相当不同, 尤其在A较大的情况。其次, 实验持续时间应当延长至足以揭示模型的差别为止。尽管如此, 本文模型仍明显优于当前实际应用中所采用的经验公式(本研究也显示指数θi随工况的不同而显著变化)。

  • 图  1  应变等效计算示意图

    Figure  1.  Calculation of the equivalent strain

    图  2  耦合损伤变量随宏细观损伤变量变化规律

    Figure  2.  Change law of the coupled damage variable varied with macroscopic and mesoscopic damage

    图  3  含裂隙岩体的受力模型

    Figure  3.  Mechanical model of cracked rock mass

    图  4  岩石试件二维计算模型

    Figure  4.  Two-dimensional calculation model of rock

    图  5  岩体单轴压缩动态应力应变曲线

    Figure  5.  Stress-strain curves of rock under axial dynamic compression

    图  6  不同应变率下试件动态应力随应变变化关系

    Figure  6.  Relation between dynamic stress of rock varied with strain under different load strain rates

    图  7  1~4条平行节理试件应力应变曲线

    Figure  7.  Stress-strain curves of the jointed rock mass with 1~4 parallel joints

  • [1] Budiansky B, O'Connell R J. Elastic moduli of a cracked solid[J]. International Journal of Solids Structures, 1976, 12(2): 81-97.
    [2] Grady D E, Kipp M L. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences, 1980, 17(3): 174-157.
    [3] Taylor L M, Chen E P, Kuszmaul J S. Microcrack induced damage accumulation in brittle rock under dynamic loading[J]. Computer Method in Applied Mechanics & Engineering, 1986, 55(3): 301-320. http://adsabs.harvard.edu/abs/1986cmame..55..301t
    [4] Zuo Q H, Disilvestro D, Richter J D. A crack-mechanics based model for damage and plasticity of brittle materials under dynamic loading[J]. International Journal of Solids and Structures, 2010, 47(2): 2790-2798.
    [5] Zhou X P, Yang H Q. Micromechanical modeling of dynamic compressive responses of mesoscopic heterogenous brittle rock[J]. Theoretical and Applied Fracture Mechanics, 2007, 48(1): 1-20. http://www.sciencedirect.com/science/article/pii/S0167844207000250
    [6] Wang Zhi-liang. Li Yong-chi, Wang J G. A damage-softening statistical constitutive model considering rock residual strength[J]. Computers & Geosciences, 2007, 33(1): 1-9. http://dl.acm.org/citation.cfm?id=1219235
    [7] Tang C A, Liu H, Lee P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression: PartⅠ: Effect of heterogeneity[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37(4): 555-569.
    [8] Li Jian-chun, Ma Guo-wei, Zhao Jian. An equivalent viscoelastic model for rock mass with parallel joints[J]. Journal of Geophysical Research, 2010, 115(B3): 1-10. http://www.onacademic.com/detail/journal_1000035646969810_4cf6.html
    [9] 李宁, 张平, 段庆伟, 等.裂隙岩体的细观动力损伤模型[J].岩石力学与工程学报, 2002, 21(11): 1579-1584.

    Li Ning, Zhang Ping, Duan Qing-wei, et al. Dynamic meso-damage model of jointed rockmass[J]. Chinese Journal of Rock Mechancis and Engineering, 2002, 21(11): 1579-1584.
    [10] 刘红岩, 邢闯锋, 刘冶, 等.宏微观缺陷对岩体力学特性影响规律试验研究[J].自然灾害学报, 2013, 2(5): 134-139. http://www.cqvip.com/QK/97398X/201305/47613345.html

    Liu Hong-yan, Xing Chuang-feng, Liu Ye, et al. Test study on the law of macro and micro flaws effects on the mechanical properties of rockmass[J]. Journal of Natural Disaster, 2013, 2(5): 134-139. http://www.cqvip.com/QK/97398X/201305/47613345.html
    [11] 杨更社, 谢定义.岩体宏观细观损伤的耦合计算分析[C]∥第六次全国岩石力学与工程学术大会论文集.武汉, 2000: 327-329.
    [12] Grady D E, Kipp M E. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 17(3): 147-157.
    [13] Grady D E, Kipp M E. The micromechanics of impact fracture of rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 293-302. http://www.sciencedirect.com/science/article/pii/0148906279902407
    [14] Kyoya T, Ichikawa Y, Kawamoto T. A damage mechanics theory for discontinuous rock mass[C]∥Proceedings of the 5th International Conference on Numerical Methods in Geomechanics. Nagoya, Japan, 1985: 469-480.
    [15] Kawamoto T, Ichikawa Y, Kyoya T. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(4): 1-30. doi: 10.1002/nag.1610120102/full
    [16] 孙卫军, 周维垣.裂隙岩体弹塑性-损伤本构模型[J].岩石力学与工程学报, 1990, 2(9): 108-119.

    Sun Wei-jun, Zhou Wei-yuan. An Elasto-plastic damage mechanics constitutive model for jointed rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 1990, 2(9): 108-119.
    [17] Lemaitre J. A course on damage mechanics[M]. Spring-Verlag, 1996.
    [18] 刘红岩, 吕淑然, 丹增卓玛, 等.节理岩体宏微观损伤耦合的三维本构模型研究[J].水利与工程学报, 2013, 11(3): 85-88. http://www.cqvip.com/QK/97660A/201303/45951673.html

    Liu Hong-yan, LüShu-ran, Danzeng Zhuo-ma, et al. Study on 3-D constitutive model for jointed rock mass by coupling macroscopic and microscopic damge[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(3): 85-88. http://www.cqvip.com/QK/97660A/201303/45951673.html
    [19] 于亚伦.用三轴SHPB装置研究岩石的动载特性[J].岩土工程学报, 1992, 14(3): 76-79.

    Yu Ya-lun. Study on the dynamic characteristic of rock by tri-axial SHPB[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(3): 76-79.
  • 期刊类型引用(16)

    1. 何风贞,李桂臣,阚甲广,许兴亮,冯晓巍,孙元田. 岩石多尺度损伤研究进展. 煤炭科学技术. 2024(10): 33-53 . 百度学术
    2. 吕思清,朱杰兵,汪斌,祝永锁. 冻融荷载耦合作用下含开口裂隙砂岩宏细观损伤模型研究. 岩石力学与工程学报. 2023(05): 1124-1135 . 百度学术
    3. 刘汉松,陈思凯,薛新凯. 考虑断裂韧度劣化的非贯通节理岩体损伤模型研究. 江西建材. 2023(08): 203-206+209 . 百度学术
    4. 王磊,王远鹏,秦越,苏宏明. 含初始损伤冻结砂岩动态破坏机理及损伤本构关系. 长江科学院院报. 2022(09): 84-89+95 . 百度学术
    5. 张雨霏,李建春,闫亚涛,李海波. 基于SHPB试验的粗糙节理面动态损伤特征研究. 岩土力学. 2021(02): 491-500 . 百度学术
    6. 陈松,乔春生,叶青,冀少鹏. 冻融荷载下节理岩体的复合损伤模型. 哈尔滨工业大学学报. 2019(02): 100-108 . 百度学术
    7. 邓正定,向帅,周尖荣,王观石,王月梅. 非贯通裂隙岩体损伤演化率相关性及变形特征. 爆炸与冲击. 2019(08): 118-129 . 本站查看
    8. 刘红岩,李俊峰,裴小龙. 单轴压缩下断续节理岩体动态损伤本构模型. 爆炸与冲击. 2018(02): 316-323 . 本站查看
    9. 陈松,乔春生,叶青,邓斌. 基于摩尔-库仑准则的断续节理岩体复合损伤本构模型. 岩土力学. 2018(10): 3612-3622 . 百度学术
    10. 王建国,李克钢,张智宇,雷振,杨阳,郭延辉. 低速冲击下平行节理岩石能量传递及动力学特性. 湖南大学学报(自然科学版). 2018(S1): 14-19 . 百度学术
    11. Liuke Huang,Jianjun Liu,Youjun Ji,Xiaoping Gong,Liangkai Qin. A review of multiscale expansion of low permeability reservoir cracks. Petroleum. 2018(02): 115-125 . 必应学术
    12. 王建国,郭延辉,张小华,徐培良,杨德源. 冲击荷载下节理数对类岩石动力学特性的影响. 地下空间与工程学报. 2017(S2): 559-564 . 百度学术
    13. 陈帅志,赵勇,雷尹嘉,肖成龙. 含缺陷材料冲击断裂的动态焦散线试验研究. 科学技术与工程. 2017(23): 137-141 . 百度学术
    14. 杨仁树,丁晨曦,杨立云,王雁冰,许鹏. 节理对爆生裂纹扩展影响的试验研究. 振动与冲击. 2017(10): 26-30+44 . 百度学术
    15. 刘红岩,杨艳,李俊峰,张力民. 基于TCK模型的非贯通节理岩体动态损伤本构模型. 爆炸与冲击. 2016(03): 319-325 . 本站查看
    16. 高红梅,兰永伟,陈勇,李长凤. 加温过程中缺陷花岗岩的耦合损伤. 黑龙江科技大学学报. 2016(04): 429-432 . 百度学术

    其他类型引用(21)

  • 加载中
图(7)
计量
  • 文章访问数:  2942
  • HTML全文浏览量:  402
  • PDF下载量:  529
  • 被引次数: 37
出版历程
  • 收稿日期:  2013-10-30
  • 修回日期:  2013-12-20
  • 刊出日期:  2015-05-25

目录

/

返回文章
返回