小不耦合系数装药爆破孔壁压力峰值计算方法

叶志伟 陈明 李桐 卢文波 严鹏

叶志伟, 陈明, 李桐, 卢文波, 严鹏. 小不耦合系数装药爆破孔壁压力峰值计算方法[J]. 爆炸与冲击, 2021, 41(6): 064901. doi: 10.11883/bzcyj-2020-0185
引用本文: 叶志伟, 陈明, 李桐, 卢文波, 严鹏. 小不耦合系数装药爆破孔壁压力峰值计算方法[J]. 爆炸与冲击, 2021, 41(6): 064901. doi: 10.11883/bzcyj-2020-0185
YE Zhiwei, CHEN Ming, LI Tong, LU Wenbo, YAN Peng. A calculation method of the peak pressure on borehole wall for low decoupling coefficient charge blasting[J]. Explosion And Shock Waves, 2021, 41(6): 064901. doi: 10.11883/bzcyj-2020-0185
Citation: YE Zhiwei, CHEN Ming, LI Tong, LU Wenbo, YAN Peng. A calculation method of the peak pressure on borehole wall for low decoupling coefficient charge blasting[J]. Explosion And Shock Waves, 2021, 41(6): 064901. doi: 10.11883/bzcyj-2020-0185

小不耦合系数装药爆破孔壁压力峰值计算方法

doi: 10.11883/bzcyj-2020-0185
基金项目: 国家自然科学基金(51979205,51779193)
详细信息
    作者简介:

    叶志伟(1994- ),男,博士研究生,whuyzw@whu.edu.cn

    通讯作者:

    陈 明(1977- ),男,博士,教授,博士生导师,whuchm@whu.edu.cn

  • 中图分类号: O383

A calculation method of the peak pressure on borehole wall for low decoupling coefficient charge blasting

  • 摘要: 基于轮廓爆破孔壁压力峰值计算方法的相关研究,充分考虑空气冲击波的传播与爆轰产物膨胀的过程,理论分析了小不耦合系数装药爆破过程中空气冲击波与炮孔壁的相互作用,建立了三维空气介质径向不耦合装药单孔爆破有限元模型,研究了工程爆破中常用的多种小不耦合系数装药组合工况下,炸药单点起爆后的炮孔壁压力峰值,并获得了相应工况下的孔壁压力峰值较爆生气体准静态等熵膨胀压力的压力增大倍数。结果表明:小不耦合系数装药爆破过程中,爆轰产物参数会对空气冲击波波后物质参数产生显著影响,揭示了小不耦合系数装药爆破与轮廓爆破在孔壁压力峰值计算方法上的本质差异;柱状装药结构爆轰波沿轴向传播使得空气冲击波撞击炮孔壁时存在叠加效应,孔壁压力峰值也相应增大,通过统计分析不同炸药类型、不同岩石类型工况下压力增大倍数与不耦合系数的关系,发现压力增大倍数随不耦合系数的增大近似呈线性增长;基于理论推导结果及常用爆破孔壁压力峰值计算形式,综合考虑炸药性能、孔壁岩石介质条件、不耦合装药系数对空气冲击波撞击炮孔壁后压力增大倍数的影响,提出了不耦合系数较小时爆破孔壁压力峰值计算方法。
  • 图  1  爆轰波到达分界面前、后压力分布

    Figure  1.  Pressure distribution before and after detonation wave reaches the interface

    图  2  空气冲击波碰撞炮孔壁时的参数

    Figure  2.  Parameters when the air shock wave impacts the borehole wall

    图  3  乳化炸药不同装药结构下孔壁压力增大倍数随介质波阻抗的变化规律

    Figure  3.  Change of pressure increase ratio with wave impedance of transmission medium under different charge structures of emulsion explosives

    图  4  铵油炸药不同装药结构下孔壁压力增大倍数随介质波阻抗的变化规律

    Figure  4.  Change of pressure increase ratio with wave impedance of transmission medium under different charge structures of ANFO explosives

    图  5  计算模型示意图

    Figure  5.  Sketch of the calculation model

    图  6  部分典型工况下孔壁压力时程曲线

    Figure  6.  Time history curves of the pressure on borehole wall under some typical working conditions

    图  7  压力增大倍数随不耦合系数变化曲线

    Figure  7.  Variation curves of pressure increase ratio with decoupling coefficient

    表  1  三种典型岩石的物理力学参数

    Table  1.   Physical and mechanical parameters of three typical rocks

    岩石 密度/(kg·m−3) 泊松比 弹性模量/GPa 屈服应力/MPa 切线模量/GPa
    粉砂岩 2170 0.25 6.70 39.20 0.6
    石灰岩 2600 0.25 32.50 72.90 3.0
    花岗岩 2700 0.24 68.00 150.00 7.0
     注:Cowper-Symonds参数C=2.5 s−1,Cowper-Symonds参数P=4.0。
    下载: 导出CSV

    表  2  两种常用炸药的计算参数

    Table  2.   Calculation parameters of two commonly used explosives

    炸药密度/(kg·m−3)爆速/(m·s−1)A/GPaB/GPaR1R2ωE0/GPa
    乳化炸药[18]13004000214.400.1824.200.900.154.192
    多孔粒状铵油炸药[19]11002700191.210.1644.200.900.152.800
    下载: 导出CSV

    表  3  乳化炸药作用下空气冲击波透射压力与入射压力的比值

    Table  3.   Transmission-to-incident pressure ratio of air blast wave induced by emulsion explosive

    装药条件不耦合系数p10/MPa粉砂岩石灰岩花岗岩平均值
    px2/MPapx2/p10px2/MPapx2/p10px2/MPapx2/p10px2/MPapx2/p10
    90/801.13128330002.3442603.3245003.5139203.06
    110/901.2278023312.9930833.9535244.5229793.82
    76/601.2763020803.3026104.1528204.4825033.98
    90/701.2957620303.5328704.9928004.8625674.46
    110/801.3838515774.1022975.9723346.0720695.38
    90/601.5022813205.7818608.1518107.9316637.29
    下载: 导出CSV

    表  4  铵油炸药作用下空气冲击波透射压力与入射压力比值

    Table  4.   Transmission-to-incident pressure ratio of air blast wave induced by ANFO explosive

    装药条件不耦合系数p10/MPa粉砂岩石灰岩花岗岩平均值
    px2/MPapx2/p10px2/MPapx2/p10px2/MPapx2/p10px2/MPapx2/p10
    90/801.1349427405.5434406.9635707.2232506.57
    110/901.2230120496.8127569.1728939.6225668.53
    76/601.2724317107.0422159.1224029.8821098.68
    90/701.2922216307.35243010.95234010.5521339.61
    110/801.38148153010.32183712.38209814.14182212.28
    90/601.5088109012.39137015.57145016.48130314.81
    下载: 导出CSV

    表  5  压力增大倍数n′

    Table  5.   Pressure increase ratio n′

    装药条件不耦合系数乳化炸药铵油炸药
    粉砂岩石灰岩与花岗岩平均值粉砂岩石灰岩与花岗岩平均值
    90/801.132.343.425.547.09
    110/901.222.994.246.819.40
    76/601.273.304.327.049.50
    90/701.293.534.937.3510.75
    110/801.384.106.0210.32 13.26
    90/601.505.788.0412.39 16.03
    下载: 导出CSV
  • [1] 刘云川, 汪旭光, 刘连生, 等. 不耦合装药条件下炮孔初始压力计算的能量方法 [J]. 中国矿业, 2009, 18(6): 104–107, 110. DOI: 10.3969/j.issn.1004-4051.2009.06.031.

    LIU Y C, WANG X G, LIU L S, et al. An energy method for calculate borehole pressure under decoupled charging [J]. China Mining Magazine, 2009, 18(6): 104–107, 110. DOI: 10.3969/j.issn.1004-4051.2009.06.031.
    [2] 梁为民, LIU H Y, 周丰峻. 不耦合装药结构对岩石爆破的影响 [J]. 北京理工大学学报, 2012, 32(12): 1215–1218, 1228. DOI: 10.3969/j.issn.1001-0645.2012.12.002.

    LIANG W M, LIU H Y, ZHOU F J. Influence of air-decoupling charge on rock blasting [J]. Transactions of Beijing Institute of Technology, 2012, 32(12): 1215–1218, 1228. DOI: 10.3969/j.issn.1001-0645.2012.12.002.
    [3] 朱瑞赓, 王雪峰. 不耦合装药爆破孔壁压力的计算(一) [J]. 爆破, 1990(3): 1–4.

    ZHU R G, WANG X F. Calculation of blasthole wall pressure of de-coupled charges [J]. Blasting, 1990(3): 1–4.
    [4] 万元林, 王树仁. 关于空气不偶合装药初始冲击压力计算的分析 [J]. 爆破, 2001, 18(1): 13–15. DOI: 10.3963/j.issn.1001-487X.2001.01.004.

    WAN Y L, WANG S R. Analyse of impact pressure about de-coupling charge [J]. Blasting, 2001, 18(1): 13–15. DOI: 10.3963/j.issn.1001-487X.2001.01.004.
    [5] 李玉民, 倪芝芳. 不耦合装药岩石冲击波参量的极曲线方法 [J]. 岩石力学与工程学报, 1998, 17(1): 76–80. DOI: 10.3321/j.issn:1000-6915.1998.01.011.

    LI Y M, NI Z F. The polar curve method to calculate the parameters of shock wave in rock blasting with uncoupled charge [J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(1): 76–80. DOI: 10.3321/j.issn:1000-6915.1998.01.011.
    [6] 朱振海, 曲广建, 孙强, 等. 不耦合装药爆炸应力场的动光弹研究 [J]. 爆炸与冲击, 1991, 11(3): 252–257.

    ZHU Z H, QU G J, SUN Q, et al. Dynamic photoelastic investigation of the action of decouple [J]. Explosion and Shock Waves, 1991, 11(3): 252–257.
    [7] FELDGUN V R, KARINSKI Y S, YANKELEVSKY D Z. Experimental simulation of blast loading on structural elements using rarefaction waves-theoretical analysis [J]. International Journal of Impact Engineering, 2017, 102: 86–101. DOI: 10.1016/j.ijimpeng.2016.12.010.
    [8] SAHARAN M R, MITRI H S. Numerical procedure for dynamic simulation of discrete fractures due to blasting [J]. Rock Mechanics and Rock Engineering, 2008, 41(5): 641–670. DOI: 10.1007/s00603-007-0136-9.
    [9] YILMAZ O, UNLU T. Three dimensional numerical rock damage analysis under blasting load [J]. Tunnelling and Underground Space Technology, 2013, 38: 266–278. DOI: 10.1016/j.tust.2013.07.007.
    [10] YI C P, JOHANSSON D, GREBERG J. Effects of in-situ stresses on the fracturing of rock by blasting [J]. Computers and Geotechnics, 2018, 104: 321–330. DOI: 10.1016/j.compgeo.2017.12.004.
    [11] HENRYCH J. The dynamics of explosion and its use [M]. Amsterdam: Elsevier, 1979.
    [12] 钮强. 岩石爆破机理[M]. 沈阳: 东北工学院出版社, 1990: 18−19.
    [13] 陈明, 刘涛, 叶志伟, 等. 轮廓爆破孔壁压力峰值计算方法 [J]. 爆炸与冲击, 2019, 39(6): 064202. DOI: 10.11883/bzycj-2018-0171.

    CHEN M, LIU T, YE Z W, et al. Calculation methods for peak pressure on borehole wall of contour blasting [J]. Explosion and Shock Waves, 2019, 39(6): 064202. DOI: 10.11883/bzycj-2018-0171.
    [14] 罗兴柏, 张玉令, 丁玉奎. 爆炸及其防护简明教程[M]. 北京: 国防工业出版社, 2016: 254−259.
    [15] 宁建国, 王成, 马天宝. 爆炸与冲击动力学[M]. 北京: 国防工业出版社, 2010: 110−112.
    [16] 周霖, 张向荣. 炸药爆炸能量转换原理及应用[M]. 北京: 国防工业出版社, 2015: 136−141.
    [17] Livermore Software Technology Corporation. LS-DYNA theoretical manual [M]. California: Livermore Software Technology Corporation, 2003: 1012−1013.
    [18] 夏祥, 李海波, 李俊如, 等. 岭澳核电站二期工程基岩爆破安全阈值分析 [J]. 岩土力学, 2008, 29(11): 2945–2951, 2956. DOI: 10.3969/j.issn.1000-7598.2008.11.010.

    XIA X, LI H B, LI J R, et al. Research on vibration safety threshold for rock under blasting excavation [J]. Rock and Soil Mechanics, 2008, 29(11): 2945–2951, 2956. DOI: 10.3969/j.issn.1000-7598.2008.11.010.
    [19] 刘军. 岩体在冲击载荷作用下的各向异性损伤模型及其应用 [J]. 岩石力学与工程学报, 2004, 23(4): 635–640. DOI: 10.3321/j.issn:1000-6915.2004.04.020.

    LIU J. Anisotropic damage model and its application to rock materials under impact load [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 635–640. DOI: 10.3321/j.issn:1000-6915.2004.04.020.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  290
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-08
  • 修回日期:  2020-09-30
  • 网络出版日期:  2021-05-13
  • 刊出日期:  2021-06-05

目录

    /

    返回文章
    返回