Characteristic work capability of non-ideal explosives in concrete
-
摘要: 为了研究非理想炸药的做功能力,对TNT、PBXN-109、AFX-757和CL-20基炸药进行了混凝土介质内爆炸实验,测量了实验炸药爆炸形成的混凝土腔体容积,通过量纲分析和实验数据建立了混凝土腔体容积的计算模型,并采用自行设计的混凝土腔体容积方法评价了炸药的爆炸做功特性。结果表明,混凝土腔体容积法能够用于评估非理想炸药的做功能力,单位质量同类型炸药的混凝土腔体容积基本一致。混凝土腔体容积与炸药能量(或炸药质量与爆热的乘积)存在线性关系,炸药混凝土中内爆炸的相对做功能力可以通过爆热当量确定。Abstract: In this study we carried out internal blast tests on TNT, PBXN-109, AFX-757 and CL-20 based explosives and measured the concrete cavity volumes of several explosives tested to study the characteristic work capability of non-ideal explosives. A calculation model of the concrete cavity volume was established on the basis of dimensional analysis and experimental dada. The characteristic work capacity of test explosives was evaluated using self-designed concrete cavity volume method. The results show that the concrete cavity volume can be used to evaluate the work capability of non-ideal explosives. The concrete cavity volume and the explosive energy (or detonation heat) forms a linear relationship. The relative work capacity of the explosive in concrete can be determined by the TNT equivalent of the detonation heat.
-
Key words:
- non-ideal explosives /
- concrete /
- work capability /
- heat of detonation /
- dimensional analysis
-
表 1 实验炸药的组分与性能参数
Table 1. Composition and performance parameters of test explosives
炸药 组分 ρ/(g·cm-3) m/g D/mm l/mm l/D Qv/(MJ·kg-1) TNT 1.57 50.0 40 26 0.65 4.230 TNT 1.57 80.0 40 42 1.05 4.230 TNT 1.57 110.0 40 57 1.43 4.230 TNT 1.57 300.0 60 68 1.13 4.230 1# 95CL-20/5binder 1.94 18.2 20 30 1.50 5.471 2# 95CL-20/5binder 1.94 36.4 20 60 3.00 5.471 PBXN-109 64RDX/20Al/16binder 1.64 300.0 60 65 1.08 6.045 AFX-757 25RDX/33Al/30AP/12binder 1.83 300.0 60 59 0.98 7.339 表 2 装药等效半径与混凝土靶体尺寸的关系
Table 2. Relation between charge equivalent radius and concrete target size
m/g rs/cm L/cm L/rs 靶体的破坏情况 50 2.29 120 52 结构完整,有小裂纹 80 2.67 120 45 结构完整,有小裂纹 110 2.97 120 40 解体 300 3.57 200 56 结构完整,有小裂纹 表 3 实验炸药的混凝土腔体容积
Table 3. Concrete cavity volume of test explosives
炸药 m/g ΔV/L Δv/(L·kg-1) TNT 50.0 0.350 7.19 TNT 80.0 0.556 6.95 TNT 300.0 2.289 7.63 1# 18.2 0.171 9.34 2# 36.4 0.349 9.58 PBXN-109 300.0 2.933 9.77 AFX-757 300.0 3.592 11.97 表 4 实验炸药的相对混凝土腔体容积与相对爆热
Table 4. Relative concrete cavity volume and relative detonation heats of test explosives
炸药 Δv/(L·kg-1) Δv/ΔvTNT Qv/(MJ·kg-1) Qv/QvTNT TNT 7.26 1.00 4.230 1.00 95CL-20/5粘 9.46 1.30 5.471 1.29 PBXN-109 9.77 1.35 6.045 1.43 AFX-757 11.97 1.65 7.339 1.74 -
[1] 郑孟菊, 余统昌, 张银亮.炸药的性能及测试技术[M].北京:兵器工业出版社, 1990:190-193;254-270. [2] COOK M A. 工业炸药学[M]. 陈正衡, 孙姣花, 译. 北京: 煤炭工业出版社, 1987: 152-193. [3] 曹新茂.世界爆破器材手册[M].北京:兵器工业出版社, 1999:1110-1112. [4] 周俊祥, 徐更光, 王廷增.含铝炸药能量释放的简化模型[J].爆炸与冲击, 2005, 25(4):309-312. doi: 10.11883/1001-1455(2005)04-0309-04ZHOU Junxiang, XU Gengguang, WANG Tingzeng. A simplified model of energy release for aluminized explosives[J]. Explosion and Shock Waves, 2005, 25(4):309-312. doi: 10.11883/1001-1455(2005)04-0309-04 [5] MILLER P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives[J]. Materials Research Society, 1996, 21(2):413-420. https://www.cambridge.org/core/journals/mrs-online-proceedings-library-archive/article/reactive-flow-model-with-coupled-reaction-kinetics-for-detonation-and-combustion-in-nonideal-explosives/71A7EB0613C56B01A2A30BF4B9451F18 [6] 胡宏伟, 宋浦, 赵省向, 等.有限空间内部爆炸研究进展[J].含能材料, 2013, 21(4):539-546. http://www.oalib.com/paper/4861924HU Hongwei, SONG Pu, ZHAO Shengxiang, et al. Progess in explosion in confined space[J]. Chinese Journal of Energetic Materials, 2013, 21(4):539-546. http://www.oalib.com/paper/4861924 [7] MARTIN A R, YALLOP H J. The correlation of explosive power with molecular structure[J]. Journal of Chemical Technology & Biotechnology, 1959, 9(6):310-315. doi: 10.1002/jctb.5010090604/references [8] JOHANSSON C H, PERSSON P A.猛炸药爆轰学[M].北京:国防工业出版社, 1976:253-255. [9] JOHANSSON C H, SJOLIN T. Measurement of the "strength" of explosives by the ballistic mortar[J]. Review of Scientific Instruments, 1968, 39(8):1173-1180. doi: 10.1063/1.1683610 [10] BJARNHOLT G, HOLMBERG R. Explosive expansion work in underwater detonations[C]//Proceedings of the 6th International Symposium on Detonation. San Diego, USA, 1976: 540-550. [11] 奥尔连科Л П. 爆炸物理学[M]. 3版. 孙承纬, 译. 北京: 科学出版社, 2011: 390-392. [12] 王肇中, 汪旭光, 夏斌.工业炸药做功能力的测试方法研究[J].火炸药学报, 2007, 30(6):24-26. http://www.cqvip.com/QK/91504X/201224/44411867.htmlWANG Zhaozhong, WANG Xuguang, XIA Bin. Study on power test method of industrial explosives[J]. Chinese Journal of Explosives & Propellants, 2007, 30(6):24-26. http://www.cqvip.com/QK/91504X/201224/44411867.html [13] HAMMOND L. Underwater shock wave characteristics of cylindrical charges: DSTO-GD-0029[R]. Aeronautical and Maritime Research Laboratory Ship Structures and Materials Division, 1995. [14] 北京工业学院八系《爆炸及其作用》编写组.爆炸及其作用(上册)[M].北京:国防工业出版社, 1979:122-124;129-133. [15] 张宝平, 张庆明, 黄风雷.爆轰物理学[M].北京:兵器工业出版社, 1999:162-170. [16] 赵国志, 张运法.战术导弹战斗部毁伤作用机理[M].南京:南京理工大学, 2002:256.