Effect of hollow ratio on crashworthiness of stainless steel-concrete-steel double-skin tubular columns
-
摘要: 以外层为不锈钢的中空夹层钢管混凝土柱为研究对象,采用有限元分析软件,模拟该类构件在低速横向冲击下的动力响应,讨论空心率对其耐撞性能的影响,并提出稳固性因数来评估结构的耐撞性能,同时展开3组实验对有限元模拟典型算例进行校正。试件的耐撞性能主要从抗冲击能力与冲击过程中结构的稳固性方面讨论。研究结果表明:空心率在0~0.73范围内,其对冲击力平台值影响不明显,试件抗冲击能力没有明显变化;空心率大于0.73,冲击力平台值明显下降,试件抗冲击能力明显减弱。空心率在0~0.6范围内,试件冲击过程中的结构稳固性因数保持在一个较高水平;空心率0.6~1.0范围内,试件冲击过程的结构稳固性因数明显降低,且呈单调下降趋势。Abstract: In this paper we simulated the dynamic response of stainless steel-concrete-steel double-skin tubular columns under low speed lateral impact loading using a software of finite element analysis, examined the effect of the hollow rate on the impacting characteristics, and proposed to evaluate the crashworthiness of a structure by using the robust coefficient, by conducting three sets of tests to adjust the typical cases of finite element simulation. The specimen's crashworthiness was analyzed mainly on the basis of its robustness structural stability in the impacting process. The results show that at a hollow rate of 0-0.6, the hollow rate's influence on the value of the impact platform was not obvious and little change in the specimen's crashworthiness was observed; at a hollow rate above 0.73, the value showed an obvious decrease and the crashworthiness was greatly reduced; at a hollow rate of 0-0.6, the specimen's structural robust coefficient was kept relatively high; and at a hollow rate of 0.6-1.0, the specimen's structural robust coefficient was obviously reduced, exhibiting an tendency of decrease in the impacting process.
-
Key words:
- stainless steel /
- impact load /
- concrete filled double steel tube /
- hollow rate
-
表 1 试件几何参数
Table 1. Geometric parameters of specimens
试件 截面尺寸 χ v0/(m·s-1) Do×to Di×ti S50 114 mm×2 mm 50 mm×1.8 mm 0.46 7.6 S76 114 mm×2 mm 89 mm×1.6 mm 0.81 9.8 S89 114 mm×2 mm 76 mm×1.6 mm 0.69 11.7 表 2 试件内外钢管材料的基本力学性能参数
Table 2. Mechanical properties of outer and inner tubes
材料 d/mm σy/MPa σu/MPa E/GPa ν λ/% 不锈钢 2 322.1 702.5 191.3 0.3 46.4 普通钢管 2 274.6 350.5 207.5 0.3 21.8 -
[1] 韩林海, 陶忠, 闫维波.圆钢管混凝土构件弯矩-曲率滞回特性研究[J].地震工程与工程振动, 2000, 20(3):50-59. doi: 10.3969/j.issn.1000-1301.2000.03.008HAN Linhai, TAO Zhong, YAN Weibo. Research on moment-curvature hysteretic behaviors of concrete filled circular steel tubes[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(3):50-59. doi: 10.3969/j.issn.1000-1301.2000.03.008 [2] 黄宏, 范志杰, 陈梦成.圆中空夹层钢管混凝土压扭构件工作机理研究[J].广西大学学报(自然科学版), 2013, 38(1):42-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdxxb201301007HUANG Hong, FAN Zhijie, CHEN Mengcheng. Mechanism of concrete-filled double-skin steel tubular column subjected to compression torsion[J]. Journal of Guangxi University (Natural Science Edition), 2013, 38(1):42-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdxxb201301007 [3] 陶忠, 韩林海, 黄宏.圆中空夹层钢管混凝土柱力学性能研究[J].土木工程学报, 2004, 37(10):41-51. doi: 10.3321/j.issn:1000-131X.2004.10.006TAO Zhong, HAN Linhai, HUANG Hong. Mechanical behaviour of concrete-filled double skin steel tubular columns with circular cular sections[J]. China Civil Engineering Journal, 2004, 37(10):41-51. doi: 10.3321/j.issn:1000-131X.2004.10.006 [4] 刘晓, 鲍俊涛, 王兵.火灾后中空夹层钢管混凝土轴压组合柱力学性能有限元研究[J].建筑结构学报, 2015, 36(增1):298-304. http://www.cnki.com.cn/Article/CJFDTotal-JZJB2015S1046.htmLIU Xiao, BAO Juntao, WANG Bing. FEA of mechanical behavior of concrete-filled double skin steel tubular columns subjected to axial compression after exposed to fire[J]. Journal of Building Structures, 2015, 36(Suppl 1):298-304. http://www.cnki.com.cn/Article/CJFDTotal-JZJB2015S1046.htm [5] WANG R, HAN L, ZHAO X, et al. Experimental behavior of concrete filled double steel tubular (CFDST) members under low velocity drop weight impact[J]. Thin-Walled Structures, 2015, 97(12):279-295. https://www.sciencedirect.com/science/article/pii/S0263823115300902 [6] 陶忠, 韩林海.中空夹层钢管混凝土的研究进展[J].哈尔滨工业大学学报, 2003, 35(增1):144-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb2003z1040TAO Zhong, HAN Linhai. Development in the research of concrete filled double-skin steel tubes[J]. Journal of Harbin Institute of Technology, 2003, 35(Suppl 1):144-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb2003z1040 [7] YOUSUF M, UY B, ZHONG T, et al. Transverse impact resistance of hollow and concrete filled stainless steel columns[J]. Journal of Constructional Steel Research, 2013, 82(82):177-189. https://www.sciencedirect.com/science/article/pii/S0143974X13000242 [8] YOUSUF M, UY B, ZHONG T, et al. Impact Behaviour and Resistance of Hollow and Concrete Filled Mild Steel Columns[J]. Australian Journal of Structural Engineering, 2012, 13(1):65-80. https://www.researchgate.net/profile/Mohammad_Yousuf/publication/257087732_Impact_Behaviour_and_Resistance_of_Hollow_and_Concrete_Filled_Mild_Steel_Columns/links/00b7d524550dadb322000000.pdf [9] YOUSUF M, UY B, TAO Z, et al. Impact behaviour of pre-compressed hollow and concrete filled mild and stainless steel columns[J]. Journal of Constructional Steel Research, 2014, 96(5):54-68. https://www.researchgate.net/publication/260805021_Impact_behaviour_of_pre-compressed_hollow_and_concrete_filled_mild_and_stainless_steel_columns [10] 曹明. 不锈钢管-混凝土-钢管中空夹层组合结构抗弯力学性能研究[D]. 太原: 太原理工大学, 2015: 94. http://cdmd.cnki.com.cn/Article/CDMD-10112-1015602110.htm [11] RASMUSSEN K J R. Full-range stress-strain curves for stainless steel alloys[J]. Journal of Constructional Steel Research, 2003, 59(1):47-61. doi: 10.1016/S0143-974X(02)00018-4 [12] ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes[J]. International Journal of Impact Engineering, 1984, 2(2):179-208. doi: 10.1016/0734-743X(84)90005-8 [13] WANG Rui, HAN Linhai, HOU Chuanchuan. Behavior of concrete filled steel tubular (CFST) members under lateral impact: Experiment and FEA model[J]. Journal of Constructional Steel Research, 2013, 80(1):188-201. https://www.sciencedirect.com/science/article/pii/S0143974X12002106 [14] 侯川川. 低速横向冲击荷载下圆钢管混凝土构件的力学性能研究[D]. 北京: 清华大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10003-1013016743.htm [15] 韩林海.钢管混凝土结构:理论与实践[M].2版.北京:科学出版社, 2007. 期刊类型引用(13)
1. 王梓宇,李胜林,李黎,凌天龙,梁书锋,孙旭. 隧道爆破地震作用下燃气管道动力响应规律研究. 爆破. 2024(03): 212-221+247 . 百度学术
2. 郭映聪. 基于小波分析基坑钻爆开挖地震效应预测研究. 市政技术. 2023(02): 126-132 . 百度学术
3. 李辉,王董东,杜文康,弓煜. 安家岭煤矿爆破振速预测与安全允许距离研究. 煤炭工程. 2023(10): 156-161 . 百度学术
4. 代树红,安志奎,王晓晨,韩荣军. 露天煤矿爆破振动速度计算公式研究. 辽宁工程技术大学学报(自然科学版). 2022(01): 41-46 . 百度学术
5. 宋宏坤. 基于爆破振速衰减规律的爆破振动控制技术. 中外公路. 2022(02): 188-193 . 百度学术
6. 贾海鹏,刘殿书,方真刚,田帅康. 地铁隧道钻爆法施工中敏感区间及安全药量确定. 北京理工大学学报. 2021(01): 23-29 . 百度学术
7. 万嗣鹏,陶铁军,陈二平,刘永明,杨志强. 考虑岩体抗拉强度的爆破振动速度衰减多元非线性模型. 爆破器材. 2020(03): 53-58 . 百度学术
8. 王林峰,邓冰杰,莫诎,赵精富,肖弘光. 基于概率论的爆破振动安全评估与控制. 振动与冲击. 2020(14): 122-129 . 百度学术
9. 周文海,梁瑞,余建平,杜超飞,王敦繁,楼晓明. 边坡抛掷爆破峰值质点振动速度的无量纲分析. 爆炸与冲击. 2019(05): 76-83 . 本站查看
10. 袁旺小. 隧道掘进爆破地表振速的预测研究. 公路交通科技(应用技术版). 2019(05): 257-259 . 百度学术
11. 周文海,余建平,梁瑞,吕亚茹,王敦繁,陈宗杰. 基于逐步回归算法的边坡爆破振动控制研究. 长江科学院院报. 2019(07): 89-95 . 百度学术
12. 王奋,范勇,周宜红,赵春菊,严鹏. 隧洞爆破地震波作用下临近水电站的安全性评估. 爆破. 2017(02): 132-137 . 百度学术
13. 王玉乐,罗周全,谢承煜,随晓丹,曹祖华. 深孔爆破对隐患资源开采两帮的动力响应特性研究. 爆破. 2017(04): 33-39 . 百度学术
其他类型引用(6)
-