• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

高速杆式弹侵彻下蓄液结构的防护能力

吴晓光 李典 吴国民 侯海量 朱锡 戴文喜

张玉磊, 倪欧琪, 侯旷怡, 李斌, 朱英中, 韩志伟. 乳化炸药铁板凹槽弯曲装药的实验研究[J]. 爆炸与冲击, 2012, 32(2): 216-220. doi: 10.11883/1001-1455(2012)02-0216-05
引用本文: 吴晓光, 李典, 吴国民, 侯海量, 朱锡, 戴文喜. 高速杆式弹侵彻下蓄液结构的防护能力[J]. 爆炸与冲击, 2018, 38(1): 76-84. doi: 10.11883/bzycj-2016-0146
ZHANG Yu-lei, NI Ou-qi, HOU Kuang-yi, LI Bin, ZHU Ying-zhong, HAN Zhi-we. Experimentalstudyonemulsionexplosiveschargedintothecurvedgrooveinanironplate[J]. Explosion And Shock Waves, 2012, 32(2): 216-220. doi: 10.11883/1001-1455(2012)02-0216-05
Citation: WU Xiaoguang, LI Dian, WU Guomin, HOU Hailiang, ZHU Xi, DAI Wenxi. Protection ability of liquid-filled structure subjected to penetration by high-velocity long-rod projectile[J]. Explosion And Shock Waves, 2018, 38(1): 76-84. doi: 10.11883/bzycj-2016-0146

高速杆式弹侵彻下蓄液结构的防护能力

doi: 10.11883/bzycj-2016-0146
基金项目: 

国家自然科学基金项目 51679246

国家自然科学基金项目 51409253

详细信息
    作者简介:

    吴晓光(1960—),男,博士,研究员

    通讯作者:

    侯海量,hou9611104@163.com

  • 中图分类号: O385

Protection ability of liquid-filled structure subjected to penetration by high-velocity long-rod projectile

  • 摘要: 为提高蓄液结构的防护能力,开展蓄液结构弹道侵彻实验,通过改变其前、后面板厚度配比,研究前、后面板不同厚度匹配对蓄液结构破坏模式、压力载荷特性及防护能力的影响。结果表明:弹丸初速是影响入射波压力峰值大小的主要因素。固定前、后面板总厚度不变时,随着前、后面板厚度比的增大,前面板破坏模式由剪切冲塞-薄膜鼓胀-凹陷变形转变为剪切冲塞-薄膜鼓胀直至剪切冲塞破坏,后面板破坏模式由隆起-碟形破坏转变为薄膜鼓胀-花瓣开裂破坏。前、后面板破坏模式是相互影响的,前、后面板厚度匹配关系决定了其相应破坏模式的发生。前面板薄后面板厚的蓄液结构吸收冲击动能更多,抗侵彻能力也更强。
  • 图  1  弹道侵彻蓄液结构实验示意图

    Figure  1.  Schematic of liquid-filled structure subjected to projectile penetration

    图  2  蓄液结构模型

    Figure  2.  Liquid-filled structure

    图  3  实验后弹丸变形破坏形貌

    Figure  3.  Projectile body deformation and failure morphology after experiment

    图  4  前后面板1 mm/5 mm厚度匹配时蓄液结构侵彻后破坏形貌

    Figure  4.  Liquid-filled structure's morphology after penetration at matching of thickness (1 mm/5 mm) between front and rear panels

    图  5  前后面板2 mm/4 mm厚度匹配时蓄液结构侵彻后破坏形貌

    Figure  5.  Liquid-filled structure's morphology after penetration at matching of thickness (2 mm/4 mm) between front and rear panels

    图  6  前后面板4 mm/2 mm厚度匹配时蓄液结构侵彻后破坏形貌

    Figure  6.  Liquid-filled structure's morphology after penetration at matching of thickness (4 m/2 mm) between front and rear panels

    图  7  不同工况下前、后面板穿孔轴线处挠度变形曲线

    Figure  7.  Drill axis deflection distribution of front and rear plates in different conditions

    图  8  文献[17]中所测压力峰值时程曲线

    Figure  8.  History of measured pressure in reference [17]

    图  9  工况1中测点所测压力时程曲线

    Figure  9.  Histories of pressure by measuring points in condition 1

    图  10  各工况下压力峰值随弹丸初速关系曲线

    Figure  10.  Relation between peak pressure and initial velocity in each condition

    图  11  前、后面板不同厚度匹配下吸能随弹丸初速度变化关系

    Figure  11.  Relation between initial velocity and absorption at matching of different thicknesses of front and rear panels

    表  1  材料参数

    Table  1.   Material parameters

    材料 E/GPa ρ/(kg·m-3) ν σy/MPa σb/MPa δ/%
    45钢 205 7 800 0.3 335 598 16
    Q235钢 210 7 850 0.3 235 400~490 22
    下载: 导出CSV

    表  2  弹道实验结果

    Table  2.   Result of ballistic experiment

    工况 h1/mm h2/mm v0/(m·s-1) vr/(m·s-1) ΔE/J pm/MPa pc/MPa
    1 1 5 792.44 300.60 6 585.61 9.70 1.61
    2 1 5 958.22 390.62 9 378.62 18.04 2.14
    3 1 5 1 067.99 440.90 11 591.07 24.50 2.20
    4 2 4 773.56 294.30 6 269.34 9.22 1.85
    5 2 4 953.97 383.20 9 349.40 17.82 2.06
    6 2 4 966.84 402.70 9 464.50 17.74 1.95
    7 4 2 792.62 321.73 6 428.02 8.90 1.31
    8 4 2 996.19 490.10 9 214.41 21.10 2.01
    9 4 2 1 053.43 531.00 10 128.89
    下载: 导出CSV
  • [1] NICOLAS L, AURÉLIA D, FRÉDÉRIC H, et al. Ballistic impact on an industrial tank: Study and modeling of consequences[J]. Journal of Hazardous Materials, 2009, 172(2/3):587-594. https://www.researchgate.net/publication/257919582_Ballistic_impact_on_an_industrial_tank_Study_and_modeling_of_consequences
    [2] 矶部孝. 水下弹道的研究[M]. 周佩芬, 译. 北京: 国防工业出版社, 1983: 56-128.
    [3] DELETOMBE E, FABIS J, DUPAS J, et al. Experimental analysis of 7.62 mm hydrodynamic ram in containers[J]. Journal of Fluids and Structures, 2013, 37(11):1-21.DOI: 10.1016/j.jfluidstructs.2012.11.003.
    [4] PETER J, DISIMILE L A, SWANSON N T. The hydrodynamic ram pressure generated by spherical projectiles[J]. International Journal of Impact Engineering, 2009, 36(6):821-829. doi: 10.1016/j.ijimpeng.2008.12.009
    [5] TOWNSEND D, PARK N, DEVALL P M. Failure of fluid filled structures due to high velocity fragment impact[J]. International Journal of Impact Engineering, 2003, 29(1):723-733.DOI: 10.1016/j.ijimpeng.2003.10.019.
    [6] 李典, 朱锡, 侯海量, 等.高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J].爆炸与冲击, 2016, 36(1):1-8. doi: 10.11883/1001-1455(2016)01-0001-08

    LI Dian, ZHU Xi, HOU Hailiang, et al. Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration[J]. Explosion and Shock Waves, 2016, 36(1):1-8. doi: 10.11883/1001-1455(2016)01-0001-08
    [7] VARAS D, ZAERA R, LÓPEZ P. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Composite Structures, 2011, 93(10):2598-2609.DOI: 10.1016/j.compstruct.2011.04.025.
    [8] NISHIDA M, TANAKA K. Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres[J]. International Journal of Impact Engineering, 2006, 32(12):2-16. https://www.sciencedirect.com/science/article/pii/S0734743X05000916
    [9] SHI H H, ITOH M, TAKAMi T. Optical observation of the supercavitation Induced by high-speed water entry[J]. Journal of Fluids Engineering, 2000, 122(4):806-810. doi: 10.1115/1.1310575
    [10] KNAPP R T, DAILY J W, HAMMIT F G. Cavitation[M]. New York: McGraw Hill, 1979.
    [11] 曹伟, 王聪, 魏英杰, 等.自然超空泡形态特性的射弹试验研究[J].工程力学, 2006, 23(12):175-187. doi: 10.3969/j.issn.1000-4750.2006.12.031

    CAO Wei, WANG Cong, WEI Yingjie, et al. High-speed projectile experimental investigation on the characteristics of natural supercaviation[J]. Engineering Mechanics, 2006, 23(12):175-187. doi: 10.3969/j.issn.1000-4750.2006.12.031
    [12] 沈晓乐, 朱锡, 侯海量, 等.高速破片侵彻防护液舱试验研究[J].中国舰船研究, 2011, 6(3):12-15. http://www.cqvip.com/QK/93256A/201103/38474331.html

    SHEN Xiaole, ZHU Xi, HOU Hailiang, et al. Experimental study on penetration properties of high velocity fragment into safety liquid cabin[J]. Chinese Journal of Ship Research, 2011, 6(3):12-15. http://www.cqvip.com/QK/93256A/201103/38474331.html
    [13] 李营, 吴卫国, 郑元洲, 等.舰船防护液舱吸收爆炸破片的机理[J].中国造船, 2015, 56(2):38-44. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D617120

    LI Ying, WU Weiguo, ZHENG Yuanzhou, et al. Study on mechanism of explosive fragments absorbed by vessel protective tank[J]. Ship Buliding of China, 2015, 56(2):38-44. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D617120
    [14] 孔祥韶, 吴卫国, 刘芳, 等.舰船舷侧防护液舱对爆炸破片的防御作用研究[J].船舶力学, 2014, 18(8):996-1004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cblx201408015

    KONG Xiangshao, WU Weiguo, LIU fang, et al. Research on protective effect of guarding fluid cabin under attacking by explosion fragments[J]. Journal of Ship Mechanics, 2014, 18(8):996-1004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cblx201408015
    [15] 沈晓乐, 朱锡, 侯海量, 等.高速破片入水镦粗变形及侵彻特性有限元分析[J].舰船科学技术, 2012, 34(7):25-29. doi: 10.3404/j.issn.1672-7649.2012.07.005

    SHEN Xiaole, ZHU Xi, HOU Hailiang, et al. Finite element analysis of underwater high velocity fragment mushrooming and penetration properties[J]. Ship Science and Technology, 2012, 34(7):25-29. doi: 10.3404/j.issn.1672-7649.2012.07.005
    [16] NICOLAS L, AURÉLIA D. Experimental study of hydraulic ram effects on a liquid storage tank: Analysis of overpressure and cavitation induced by a high-speed projectile[J]. Journal of Hazardous Materials, 2010, 178(1/2/3):635-643.DOI: 10.1016/j.jhazmat.2010.01.132.
    [17] DISIMILEA P J, SWANSONB L A, NORMAN T, et al. The hydrodynamic ram pressure generated by spherical projectiles[J]. International Journal of Impact Engineering, 2009, 36(6):821-829.DOI: 10.1016/j.ijimpeng.2008.12.009.
  • 期刊类型引用(5)

    1. 赵著杰,侯海量,吴晓伟,李永清,李典,姜安邦. 冲击载荷下蓄液结构动响应及防护机理的研究进展. 爆炸与冲击. 2024(05): 17-49 . 本站查看
    2. 王克,侯海量,李永清,李典. 攻角对杆状弹体入水侵彻特性影响数值分析. 舰船科学技术. 2023(13): 6-13 . 百度学术
    3. 高圣智,赵著杰,侯海量,李典,王克. 胞元膨胀特性及其对水锤效应的影响数值分析(英文). 船舶力学. 2023(12): 1840-1855 . 百度学术
    4. 高圣智,侯海量,白雪飞,李永清,李典. 高速弹体侵彻下充液结构的破坏特性及防护技术研究进展. 舰船科学技术. 2021(01): 1-10 . 百度学术
    5. 刘阳. 多层介质复合防护结构侵彻性能的数值分析. 哈尔滨工程大学学报. 2019(12): 2005-2009+2049 . 百度学术

    其他类型引用(3)

  • 加载中
推荐阅读
含煤基固废漂珠低爆速乳化炸药的爆炸特性和热安全性
韦箫 等, 爆炸与冲击, 2025
多级柱面炸药内爆磁通量压缩技术研究
谷卓伟 等, 爆炸与冲击, 2024
不同点火方式下hmx基pbx炸药反应演化过程的特征分析
楼建锋 等, 爆炸与冲击, 2024
Ta2/az31b/2024al爆炸焊接复合板界面微观结构特征及其动态力学性能
梁汉良 等, 爆炸与冲击, 2024
Dnan基熔铸炸药的动态力学行为及点火特性
赵东 等, 高压物理学报, 2025
爆轰加载下tatb基钝感炸药的冲击-卸载-再冲击实验装置设计与模拟
樊辉 等, 高压物理学报, 2024
低温环境对乳化炸药爆炸性能的影响
刘赛 等, 高压物理学报, 2024
A polymer tethering strategy to achieve high metal loading on catalysts for fenton reactions
Wang, Lixin et al., NATURE COMMUNICATIONS, 2023
Equivalent method of stiffened plates for dynamic response and damage assessment under internal blast
STRUCTURES, 2025
Resistance equation of projectile penetrating into reinforced concrete shield
WANG Wu et al., EXPLOSION AND SHOCK WAVES, 2025
Powered by
图(11) / 表(2)
计量
  • 文章访问数:  5609
  • HTML全文浏览量:  2130
  • PDF下载量:  231
  • 被引次数: 8
出版历程
  • 收稿日期:  2016-05-24
  • 修回日期:  2016-11-03
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回