Mechanical behaviours of aeronautical inorganic glass at different strain rates
-
摘要: 利用电子万能试验机和改进的分离式Hopkinson压杆测试了飞机风挡无机玻璃在2种准静态应变率(4×10-4、4×10-3 s-1)和2种动态应变率(200、400 s-1)下的单轴压缩力学行为,并利用高速摄像机记录试样破坏过程。实验结果表明:玻璃破坏时表现为典型的脆性材料,随着应变率的提高,材料的压缩强度显著提高。通过观察试样变形过程及变形后的形貌可知,玻璃在压缩载荷下的破坏模式为横向张应力引起的裂纹成核、沿轴向扩展与联结交错导致的失效破坏,并从微裂纹成核扩展和能量耗散的角度对材料的应变率效应做出了合理的解释。Abstract: By using an electronic universal testing machine and a modified split Hopkinson pressure bar device, the uniaxial compressive mechanical behaviours of glass used as the windshield of aircraft was tested. The experiments were finished at two quasi-static strain rates(4×10-4, 4×10-3s-1) and two high strain rates(200, 400 s-1). The glass fracture progress was also recorded by a high-speed camera. The experimental results show as follows. Catastrophic brittle failure was observed for the specimens tested at different strain rates. With the increase of strain rate, the compressive strength of the glass increases remarkably. By the fracture images and fragmentation forms, it is known that under compressive loads, the cracks initiate and propagate in the length direction under lateral tensile stress. Then the cracks connect and contact with each other, resulting in fragmentation of the specimen. The strain rate effect is explained properly in the point of microcrack initiation and development as well as energy dissipation.
-
Key words:
- compressive strength /
- uniaxial compression /
- glass /
- fragmentation forms /
- strain rate effect
-
图 9 动态压缩过程中高速摄像的试样图片
Figure 9. Images for specimens in dynamic comression corresponding to Fig. 8
-
[1] DE FUSCO R P. United States air force bird strike summary (1986-1987): ADF616023[R]. [2] PERONI M, SOLOMOS G, PIZZINATO V, et al. Experimental investigation of high strain-rate behaviour of glass[J]. Applied Mechanics and Materials, 2011, 82:63-68. doi: 10.4028/www.scientific.net/AMM.82 [3] ZHANG X H, ZOU Y, HAO H, et al. Laboratory test on dynamic material properties of annealed float glass[J]. International Journal of Protective Structures, 2012, 3(4):407-430. doi: 10.1260/2041-4196.3.4.407 [4] ZHANG X H, HAO H, MA G W. Dynamic material model of annealed soda-lime glass[J]. International Journal of Impact Engineering, 2015, 77:108-119. doi: 10.1016/j.ijimpeng.2014.11.016 [5] XU N, CHEN W N. Rate and surface treatment effect on the strength of boro-glass[C]//Proceedings of 11th International Congress and Exhibition on Experimental and Applied Mechanics, 2008: 122-124. http://www.researchgate.net/publication/267807113_Rate_and_surface_treatment_effect_on_the_strength_of_Boro-glass [6] XU N, CHEN W N. Dynamic failure of borosili-cate glass under compression/shear loading experiments[J]. Journal of the American Ceramic Society, 2007, 90(8):2556-2562. doi: 10.1111/jace.2007.90.issue-8 [7] SUN X, LIU W N. Modeling and characterization of dynamic failure of borosilicate glass under compression/shear loading[J]. International Journal of Impact Engineering, 2009, 36(2):226-234. doi: 10.1016/j.ijimpeng.2008.01.014 [8] 李磊, 安二峰, 杨军.浮法玻璃应变率相关的动态本构关系[J].建筑材料学报, 2011, 14(2):202-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzclxb201102011LI Lei, AN Erfeng, YANG Jun. Strain rate dependent dynamic constitutive equation of float glass[J]. Journal of Building Materials, 2011, 14(2):202-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzclxb201102011 [9] 安二峰, 李磊, 杨军.典型玻璃材料冲击力学性能研究[J].北京理工大学学报, 2010, 30(2):127-130. https://www.wenkuxiazai.com/doc/eeefab11ba1aa8114431d95d-2.htmlAN Erfeng, LI Lei, YANG Jun. A study on the impact properties of typical glassy materials[J]. Transactions of Beijing Institude of Technology, 2010, 30(2):127-130. https://www.wenkuxiazai.com/doc/eeefab11ba1aa8114431d95d-2.html [10] 郭伟国, 李玉龙, 索涛.应力波基础简明教程[M].西安:西北工业大学出版社, 2007:128-132. [11] 宋力, 胡时胜.SHPB测试中的均匀性问题及恒应变率[J].爆炸与冲击, 2005, 25(3):207-216. doi: 10.11883/1001-1455(2005)03-0207-10SONG Li, HU Shisheng. Stress uniformity and constant strain rrate in shpb test[J]. Explosion and Shock Waves, 2005, 25(3):207-216. doi: 10.11883/1001-1455(2005)03-0207-10 [12] 王鲁明, 赵坚, 华安增, 等.脆性材料SHPB实验技术的研究[J].岩石力学与工程学报, 2003, 22(11):1798-1802. doi: 10.3321/j.issn:1000-6915.2003.11.009WANG Luming, ZHAO Jian, HUA Anzeng, et al. Reasearch on SHPB testing technique for brittle material[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11):1798-1802. doi: 10.3321/j.issn:1000-6915.2003.11.009 [13] 李二兵, 谭跃虎, 马聪, 等.三向压力作用下盐岩SHPB试验及动力强度研究[J].岩石力学与工程学报, 2015(增刊2):3742-3749.LI Erbing, TAN Yuehu, MA Cong, et al. Split Hopkinson pressure bar test and dynamic strength research of salt rock under three-pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2015(suppl 2):3742-3749. [14] 于水生, 卢玉斌, 蔡勇.确定岩石类材料SHPB试验中真实应变率效应的修正方法[J].武汉理工大学学报, 2013(6):96-100. http://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201306020.htmYU Shuisheng, LU Yubin, CAI Yong. A correction to determine the real strain-rate effect for rock-like materials based on SHPB testing[J]. Journal of Wuhan University of Technology, 2013(6):96-100. http://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201306020.htm [15] 方秦, 洪建, 张锦华, 等.混凝土类材料SHPB实验若干问题探讨[J].工程力学, 2014(5):1-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gclx201405002&dbname=CJFD&dbcode=CJFQFANG Qin, HONG Jian, ZHANG Jinhua, et al. Issues of SHPB test on concrete-like material[J]. Engineering Mechanics, 2014(5):1-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gclx201405002&dbname=CJFD&dbcode=CJFQ [16] LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40(2):343-360. doi: 10.1016/S0020-7683(02)00526-7 期刊类型引用(14)
1. 向怡霖,邱爽,郭辉,陈玉,周自荣. 透明聚脲-玻璃复合件在冲击荷载下的动力学性能研究. 包装工程. 2024(19): 125-133 . 百度学术
2. 刘小根,QI Shuang,WEI Shaoshan,WAN Detian,JIN Chunxia. Bending Strength of Glass Materials under Strong Dynamic Impact and Its Strain Rate Effects. Journal of Wuhan University of Technology(Materials Science). 2024(06): 1358-1364 . 百度学术
3. 郝贠洪,胡臻,郭鑫,吴日根. 冲击荷载下钢化夹层玻璃薄板的动力学响应研究. 应用力学学报. 2023(04): 883-892 . 百度学术
4. 陆晓华,张柱国,张迎春,左洪福. 飞机风挡不同位置遭遇轻型无人机高速碰撞损伤敏感性研究. 振动与冲击. 2023(23): 284-292 . 百度学术
5. 牛欢欢,闫晓鹏,罗浩舜,陈佳君,李志强. 不同应变率下蓝宝石透明陶瓷玻璃的力学响应. 爆炸与冲击. 2022(07): 74-83 . 本站查看
6. 杨鹏慧,王衍行,李现梓,韩韬,李家满,朱治国,祖成奎. 玻璃抗均布载荷特性研究进展. 硅酸盐通报. 2022(11): 4036-4048 . 百度学术
7. 朱慧玲,汪海涛,杨磊. 直升机风挡透明件弯曲性能分析. 直升机技术. 2022(04): 27-30 . 百度学术
8. 赵景云,颜悦,霍钟祺. 电加温热载荷对直升机风挡玻璃的影响. 机械科学与技术. 2021(07): 1143-1148 . 百度学术
9. 陆华成,熊雪梅,钟东海,郑宇轩,周风华. 端面摩擦对玻璃压缩强度的影响. 硅酸盐通报. 2021(10): 3511-3515 . 百度学术
10. 刘小川,王彬文,白春玉,惠旭龙,陈熠,张宇. 航空结构冲击动力学技术的发展与展望. 航空科学技术. 2020(03): 1-14 . 百度学术
11. 马棋棋,熊迅,郑宇轩,周风华. 无机玻璃动态压缩破坏的离散元模拟. 高压物理学报. 2019(04): 63-73 . 百度学术
12. 孙晓波,高玉波,徐鹏. 冲击载荷下Al_2O_3陶瓷的失效与破碎特性. 高压物理学报. 2019(05): 114-122 . 百度学术
13. 刘信超,徐亚芳,王露晨,陆晓华,左洪福. 运输类飞机风挡鸟撞位置影响分析研究. 振动与冲击. 2019(17): 95-102 . 百度学术
14. 王振,索涛,李玉龙,王祥,王银茂. 退火及化学钢化硅酸盐玻璃的动态弯曲力学行为研究. 北京理工大学学报. 2019(10): 1006-1011 . 百度学术
其他类型引用(13)
-