Shock wave propagation characteristics of double layer charge explosion in the air
-
摘要: 为了研究复合装药超压爆轰时的径向能量输出特性,选择典型的TNT、JO-8、海萨尔等理想、非理想高能炸药,进行了单一装药、内外层复合装药冲击波超压测试实验。采用自由场压电传感器测量了距爆心2、3、4 m处的冲击波压力,通过Origin软件对实验数据进行去除“零漂”和积分处理,获得了冲击波超压、冲量随距离的变化规律,分析了装药结构、装药类型对实验结果的影响。研究结果表明:与同体积单一装药相比,内外层复合装药对提高径向冲击波超压无优势,但对径向冲击波冲量增益显著,且冲量随传播距离的增加而增大;装药类型对内外层复合装药径向冲击波冲量增益影响较大,非理想/理想复合装药在4 m处的冲量增益大于20%,比理想/理想复合装药更有利于提高战斗部的径向输出威力。Abstract: This paper studies the radial energy output of double-layer charge overpressure detonation based on the tests of single charge and double-layer charge explosion carried out on shock wave overpressure using ideal and non-ideal explosive of TNT, JO-8 and Hesar. The shock wave overpressure at 2, 3, 4 m was measured using the free filed piezoelectric sensor. The pattern of the shock wave overpressure and impulse varying with the distance was obtained by eliminating the zero-drift and integrating the software Origin. The effect of the charge structure and material was also examined. The results show that the overpressure of TNT/JO-8 double-layer charge in the radial direction was not improved as compared with the single charge with the same volume while the shock wave impulse exhibited a positive gain and increased with the distance. The material selection for the double-layer charge has great influence on the shock wave impulse. The overpressure gain at 4 m was about 15% for the non-ideal/ideal charge, which is much more beneficial in the radial output than for the ideal/ideal charge.
-
Key words:
- double layer charge /
- shock wave /
- propagate /
- overpressure /
- impulse
-
表 1 实验工况
Table 1. Experimental conditions
工况 装药结构 装药类型 实验次数/发 中心 外层 1 单一装药 TNT 2 2 单一装药 JO-8 2 3 单一装药 海萨尔 1 4 内外复合装药 TNT JO-8 2 5 内外复合装药 海萨尔 JO-8 1 表 2 冲击波超压测量结果
Table 2. Measured results of shock wave overpressure
工况 Δp2/MPa Δp3/MPa Δp4/MPa 测量值1 测量值2 平均值 测量值1 测量值2 平均值 测量值1 测量值2 平均值 1-1 0.080 6 0.069 0 0.074 8 0.031 5 0.032 5 0.032 0 -- -- -- 1-2 0.087 4 -- 0.087 4 0.034 7 0.027 1 0.030 9 -- -- -- 2-1 -- -- -- 0.030 9 0.027 8 0.029 4 0.020 4 0.018 5 0.019 4 2-2 0.091 1 0.083 8 0.087 4 0.035 9 -- 0.035 9 -- -- -- 3 0.075 8 0.127 8 0.101 8 0.047 5 0.031 1 0.039 3 0.029 7 0.022 3 0.026 0 4-1 -- 0.068 1 0.068 1 0.031 0 0.031 1 0.031 1 -- -- -- 4-2 0.068 0 0.067 8 0.067 9 0.028 9 0.033 2 0.031 0 -- -- -- 5 0.086 6 0.083 3 0.085 0 0.037 9 0.029 5 0.033 7 0.023 6 0.020 9 0.022 3 表 3 冲击波超压及其增益
Table 3. Shock wave overpressure and gain
距离/m 冲击波超压/MPa 复合装药冲击波超压增益/% TNT JO-8 TNT
/JO-8海萨尔 海萨尔
/JO-8TNT/JO-8
比TNTTNT/JO-8
比JO-8海萨尔/JO-8
比海萨尔海萨尔/JO-8
比JO-82 0.081 1 0.087 4 0.068 0 0.101 8 0.085 0 -16 -22 -17 -3 3 0.031 5 0.032 7 0.031 1 0.039 3 0.033 7 -1.3 -1.2 -14 3 4 -- 0.019 4 -- 0.026 0 0.022 3 -- -- -14 15 表 4 冲击波冲量及其增益
Table 4. Shock wave impulse and gain
距离/m 冲击波冲量/(Pa·s) 复合装药冲击波冲量增益/% TNT JO-8 TNT
/JO-8海萨尔 海萨尔/JO-8 TNT/JO-8
比TNTTNT/JO-8
比JO-8海萨尔/JO-8
比海萨尔海萨尔/JO-8
比JO-82 34.4 36.2 31.4 68.4 40.5 -8.7 -13 -40.8 11.9 3 26.5 26.3 27.7 33.4 37.4 4.5 5.3 12 25.5 4 -- -- -- 24.4 29.4 -- -- 20.5 -- -
[1] ANDREWS S, GLANCY B, FORBES J, et al. Experiments on the modification of the energy release rate in a non-ideal[J]. AIP Conference Proceedings, 1996, 370:799-802. doi: 10.1063/1.50607 [2] KATO H, MURATA K, ITOH S, et al. Application of overdriven detonation in high density explosive to shaped charge[C]//GALVEZ F, SANCHEZ-GALVEZ V. 23rd International Symposium On Ballistics. Tarragona, Spain: IBC, 2007: 223-230. [3] KATO H, MURATA K, ITOH S, et al. Investigation of jet formation with overdriven detonation in high density explosive[J]. Materials Science Forum, 2008, 566:327-332. doi: 10.4028/www.scientific.net/MSF.566 [4] ZHANG X, HUANG Z, QIAO L. Detonation wave propagation in double-layer cylindrical high explosive charges[J]. Propellants Explosives Pyrotechnics, 2011, 36(3):210-218. doi: 10.1002/prep.v36.3 [5] 张先锋, 赵晓宁.夹层装药的超压爆轰研究综述[J].含能材料, 2011, 19(3):352-360. doi: 10.3969/j.issn.1006-9941.2011.03.024ZHANG Xianfeng, ZHAO Xiaoning. Review on overpressure detonation of intercalated charge[J]. Chinese Journal of Energetic Materials, 2011, 19(3):352-360. doi: 10.3969/j.issn.1006-9941.2011.03.024 [6] 张先锋, 丁建宝, 赵晓宁.夹层聚能装药作用过程的数值模拟[J].爆炸与冲击, 2009, 29(6):617-624. http://www.bzycj.cn/CN/abstract/abstract8988.shtmlZHANG Xianfeng, DING Jianbao, ZHAO Xiaoning. Numerical simulation of the process of sandwich shaped charge[J]. Explosion and Shock Waves, 2009, 29(6):617-624. http://www.bzycj.cn/CN/abstract/abstract8988.shtml [7] 向梅. 复合装药的安全性及能量输出特性研究[D]. 南京: 南京理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10288-1013167456.htm [8] 章少方. 复合装药爆轰能量输出及冲击波感度的数值模拟研究[D]. 南京: 南京理工大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10288-2010096631.htm [9] MAYSELESS M, HIRSCH E, HARVEY W B, et al. Is higher detonation velocity needed for shaped-charges[C]//BAKER E, TEMPLETON D. 26th International Symposium on Ballistics. Miami, FL, United States: DEStech Publications Inc., 2011: 155-166. [10] COLCLOUGH M E. A novel tuneable effects explosive charge[C]//2012 NDIA IM & EM Symposium. Las Vegas, NV: Nation Defense Industrial Association, 2012: 124-134. [11] SLYKE J V, LUDWIG W, GAMBLE J, et al. Effect of convergent detonation on gurney energy and cylinder expansion[C]//WICKERT M, SALK M. 27th International Symposium On Ballistics. Freiburg, Germany: DEStech Publications Inc., 2013: 22-26. [12] 计冬奎, 高修柱, 肖川.含铝炸药作功能力和JWL状态方程尺寸效应研究[J].兵工学报, 2012, 33(5):552-555. http://manu48.magtech.com.cn/Jwk_bgxb/CN/abstract/abstract450.shtmlJI Dongkui, GAO Xiuzhu, XIAO Chuan. Study on dimension effect of accelerating ability and JWL equation of state for aluminized explosive[J]. Acta Armamentarii, 2012, 33(5):552-555. http://manu48.magtech.com.cn/Jwk_bgxb/CN/abstract/abstract450.shtml